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We consider the first boundary value problem for elliptic systems
defined in unbounded domains, which solutions satisfy the condition of
finiteness of the Dirichlet integral also called the energy integral

∫

Ω

|∇u|2dx <∞.

Basic concepts

Let Ω is an arbitrary open set in R
n. As is usual, by W 1

2, loc(Ω) we denote
the space of functions which are locally Sobolev, i.e.

W 1
2, loc(Ω) = {f : f ∈W 1

2 (Ω ∩Bxρ ), ∀ ρ > 0 , ∀x ∈ R
n} ,

where Bxρ – open ball with center at point x and with radius ρ. If x = 0

then we will write Bρ. We will denote by
o

W1
2, loc(Ω) set of functions from

W 1
2, loc(R

n), which is the closure of C∞
0 (Ω) in the system of seminorms

‖u‖W 1
2
(K), where K ⊂ R

n are various compacts. Let denote by L1
2(Ω)

a space of generalized functions in Ω, which first derivatives belong to
L2(Ω) [4], in other words

L1
2(Ω) = {f ∈ D

′

(Ω) :

∫

Ω

|∇f | 2dx <∞}.

Let ω ⊆ R
n is an open set, K ⊂ ω is a compact. We will denote

by Φϕ(K, ω) the set of functions ψ ∈ C∞
0 (ω) such that ψ = ϕ in the

neighborhood of K, or in other words ψ − ϕ ∈
o

W1
2, loc(R

n \ K).
Let’s define a capacitance of a compact K relative to the set ω [4]:

capϕ(K, ω) = inf
ψ∈Φϕ(K, ω)

∫

ω

|∇ψ| 2dx .
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The capacitance of arbitrary closed set E ⊂ ω in R
n is defined by the

formula capϕ(E,ω) = sup
K⊂E

capϕ(K, ω). If ω = R
n, then instead of

capϕ(E,R
n) we will write capϕ(E).

Problem statement

Let L is a divergent operator

L =
n
∑

i,j=1

∂

∂xi

(

aij(x)
∂

∂xj

)

,

where aij are bounded measurable functions in R
n satisfying condition

γ|ξ|2 ≤

n
∑

i,j=1

aij(x) ξi ξj , ξ ∈ R
n, γ > 0 .

The solution of the Dirichlet problem

{

Lu = 0 in Ω

u|∂Ω = ϕ,
(1)

where ϕ ∈W 1
2, loc(R

n), is a function u ∈W 1
2, loc(Ω) such that:

1) u − ϕ ∈
o

W1
2, loc(Ω), i.e. (u − ϕ)µ ∈

o

W1
2(Ω) for any function

µ ∈ C∞
0 (Rn);

2) function u has bounded Dirichlet integral

∫

Ω

|∇u|2dx <∞ ;

3)
∫

Ω

n
∑

i,j=1

aij(x)
∂u

∂xj

∂ψ

∂xi
dx = 0

for any function ψ ∈ C∞
0 (Ω).
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Basic results

Theorem 1. Let’s capϕ− c(R
n \Ω) <∞ for some constant c ∈ R

n. Then
the problem (1) has a solution.
Theorem 2. Let the problem (1) has a solution and it is true that

∫

Rn\Ω

|∇ϕ|2dx <∞ .

Then there is such constant c ∈ R
n, that capϕ− c(R

n \ Ω) <∞.
Theorem 3. Let n ≥ 3. Then capϕ− c(R

n \ Ω) <∞ if and only if

∞
∑

k=N

capϕ− c((B2k+1 \B2k−1) ∩ (Rn \ Ω), B2k+2 \B2k−2) <∞

for some N ∈ N.

Particular cases

Let consider the space R
n with a set of coordinates (x1, x2, . . . , xn) and

let ϕα = (1+|x1|)
α. Domain Ω1,i is upper half-plane relative to xi, where

i 6= 1, in other words Ω1,i = {(x1, x2, . . . , xn)|xi ≥ 0, i 6= 1}. Domain Ω2

is the outer part of the space formed by surface of revolution relative to
x1 of the curve from Fig.1.

x2 = |x1|
β, β < 0

x1A

x2

Fig. 1: Domain Ω2
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Corollary 1. Let n ≥ 2. Then for the domain Ω1,i and for bounded
function ϕα the existence of solutions of the problem (1) is equivalent to

either an inequality α < −
1

2
or α = 0.

Corollary 2. Let n ≥ 3. Then for the domain Ω2 and for bounded
function ϕα the existence of solutions of the problem (1) is equivalent to

either an inequality α < −
1 + β(n− 3)

2
or α = 0.
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