
1/15

A Compact Bit-Sliced Representation of Kuznyechik S-box

O. Avraamova1, D. Fomin2, V. Serov1, A. Smirnov1, and V. Shokov1

1 Lomonosov Moscow State University, Russia
2 Higher School of Economics, Russia

olga.avraamova@gmail.com, dfomin@hse.ru, v_serov_@mail.ru,
asmirnov80@gmail.com, shokov@srcc.msu.ru

©Academy of Cryptography of the Russian Federation, 2020

September 15, 2020

2/15

. . .Determing the manner of operation of a given switching circuit,
is comparatively simple. The inverse problem of finding a circuit
satisfying certain given operating conditions, and in particular the
best circuit is, in general, more difficult and more important from the
practical standpoint

Claude E. Shannon
The Synthesis of Two-Terminal Switching Circuit, 1949

3/15

Decompositions

There are several different “decomposition” the S-box of Kuznyechik1:

Figure: The TU-decomposition Figure: The log-based decomposition

1pictures are from and more details in: Léo Perrin, Partitions in the S-Box of Streebog and Kuznyechik,
Cryptology ePrint Archive, Report 2019/092

4/15

Piano → Lego Piano → Bricks

Boolean function
minimization basis

{AND,OR,NOT,XOR}

5/15

Chosen construction

The TU-decomposition was first presented in
“Reverse-engineering the SBox of Streebog,
Kuznyechik and STRIBOBr1” by Alex Biryukov, Leo
Perrin, and Aleksei Udovenko., 2016

It consists of:
linear transformations V8 → V8: α and ω
non-linear transformations V4 → V4: ν0, ν1, I, σ,
ϕ

multiplication in Galois field GF
(
24,},⊕

)
=

GF(2)[x]/(f (x)) with irreducible polynomial
f (x) = x4 ⊕ x3 ⊕ 1
multiplexer (if-else construction)

6/15

Linear transformation

α =



0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1
0 1 0 0 0 0 1 1
1 1 1 0 1 1 1 1
1 0 0 0 1 0 1 0
0 1 0 0 0 1 0 0
0 0 0 1 1 0 1 0
0 0 1 0 0 0 0 0



Total α and ω: 14 XOR

l = (l1, l2, l3, l4), r = (r1, r2, r3, r4) be representations
of field elements as vectors. Then α has the following
Boolean representation:

α1(l, r) = r1,
α2(l, r) = l2 ⊕ r4,
α3(l, r) = l2 ⊕ r3 ⊕ r4 = α2(l, r)⊕ r3,
α4(l, r) = l1 ⊕ l2 ⊕ l3 ⊕ r1 ⊕ r2 ⊕ r3 ⊕ r4 =

= α2(l, r)⊕ α5(l, r)⊕ l3 ⊕ r2,
α5(l, r) = l1 ⊕ r1 ⊕ r3 = l1 ⊕ p1,
α6(l, r) = l2 ⊕ r2,
α7(l, r) = l4 ⊕ r1 ⊕ r3 = l4 ⊕ p1,
α8(l, r) = l3,
p1 = r1 ⊕ r3.

7/15

Finite field multiplication

Using the standard basis of GF
(
24
)
{e1 = (1000), e2 = (0100), e3 = (0010),

e4 = (0001)} it is easy to show that the every coordinate zk, k ∈ 1, 4, z = x� y,
x, y, z ∈ GF

(
24
)
is a quadratic form:

zk = (x} y)k =

((4∑
i=1

xiei
)
}

(4∑
j=1

yjej
))k

=
∑
i,j

xi · yj(ei } ej)k ⇒

⇒ zk = (x1, x2, x3, x4)

ck11 . . . ck14
...
ck41 . . . ck44



y1
y2
y3
y4

 .

8/15

Finite field multiplication

z = x� y, z =
(
z1, z2, z3, z4

)
, x =

(
x1, x2, x3, x4

)
, y =

(
y1, y2, y3, y4

)
:

z1 = (P2 ⊕ x4) · y1 ⊕ P2 · y2 ⊕ P1 · y3 ⊕ x1 · y4,
z2 = x1 · y1 ⊕ x4 · y2 ⊕ x3 · y3 ⊕ x2 · y4,
z3 = P1 · y1 ⊕ x1 · y2 ⊕ x4 · y3 ⊕ x3 · y4,
z4 = P2 · y1 ⊕ P1 · y2 ⊕ x1 · y3 ⊕ x4 · y4,
P1 = x1 ⊕ x2,
P2 = x1 ⊕ x2 ⊕ x3 = P1 ⊕ x3.

Total: 31 Boolean operations

9/15

Branching elimination

There is an “if-else” construction in the considered decomposition:
“2.If r = 0 then l := ν0(l) else l := ν1(l} I(r))”

Let I0,0,0,0(r) be a Boolean function which takes the value 1 in a single point
r = (0, 0, 0, 0) then this construction can be expressed by a formula:

li = I0,0,0,0(r) · ν i0(l) + I0,0,0,0(r) · ν i1(l} I(r)), i = 1, . . . , 4.

It can be rewriten as follows:

li = I0,0,0,0(r) ·
(
ν i0(l)⊕ ν i1(0)

)
⊕ ν i1(l} I(r)), i = 1, . . . , 4.

10/15

Branching elimination

Using the fact that

I0,0,0,0(r) = r̄1 · r̄2 · r̄3 · r̄4 = r1 + r2 + r3 + r4.

and ν i1(0) = (0, 0, 1, 0) we can implement branching using operations that are given in a
table below:

AND OR NOT XOR Total
I0,0,0,0(r) 3 3
I0,0,0,0(r) 1 1
Final glue

by every coordinate 1 1(2)
Final glue

for all coordinaetes 4 5 9

Total: 13 Boolean operations

11/15

Heuristic algorithm for non-linear elements

There are 5 non-linear elements in the considered decomposition:

I 0, 1, c, 8, 6, f, 4, e, 3, d, b, a, 2, 9, 7, 5
v0 2, 5, 3, b, 6, 9, e, a, 0, 4, f, l, 8, d, c, 7
v1 7, 6, c, 9, 0, f, 8, 1, 4, 5, b, e, d, 2, 3, a
ϕ b, 2, b, 8, c, 4, 1, c, 6, 3, 5, 8, e, 3, 6, b
σ c, d, 0, 4, 8, b, a, e, 3, 9, 5, 2, f, 1, 6, 7

The goal is to represent it as a set of Boolean functions in the basis of logical functions
AND,OR,NOT,XOR with the minimal number of operations.

12/15

Heuristic algorithm for non-linear elements

DNF

Quine-
McCluskey

Duplicate
Elimination

Removing
common
factor

Optimization
of “NOT”

Constants
evaluation

Optimal
function

optimization

XOR
optimization

Combining
Brackets

ANF
optimization

Merging
Common
Parts

13/15

Heuristic algorithm for non-linear elements. Results

The total complexity of the set of functions is much less than the complexity of
non-optimized functions.

Function Number of operations
I 26
v0 29
v1 29
ϕ 33
σ 31

14/15

Summary

We consider the possibility of bit-slicing the non-linear bijective mapping of GOST
R 34-12.2015 «Kuznyechik» block cipher.
It should be noted that in 2016 “A Method of Constructing S-boxes With Minimal
Number of Logical Elements” got a patent in Russian Federation. The method
protected by this patent allows to realize non-linear mapping of Kuznyechick cipher
with complexity of 681 Boolean operations.
Our results are presented below:

AND OR NOT XOR Total
I 8 5 4 9 26
v0 9 5 6 9 29
v1 4 3 3 7 17
ϕ 11 6 8 7 32
σ 11 6 7 9 33

α and ω 14 14
multiplication in GF

(
24
)

16 15 31
branchng elimination 4 3 1 5 13

79 28 29 90 Total: 226

15/15

Thank you for your attention!

Questions?

