Об эвристическом подходе к построению биективных векторных булевых функций с заданными криптографическими характеристиками

М. А. Коврижных, Д. Б. Фомин

Национальный исследовательский университет «Высшая школа экономики», г. Москва makovrizhnykh@gmail.com, dfomin@hse.ru

Новосибирск, 9 сентября, 2021

Аннотация

Предложен эвристический алгоритм построения биективных булевых функций с заданными криптографическими свойствами — нелинейностью и дифференциальной δ -равномерностью — на основе обобщённой конструкции.

Производится поиск вспомогательных подстановок меньшей размерности в обобщённой конструкции с использованием идей спектрально-линейного и спектрально-разностного методов. Исследована возможность оптимизации вычисления криптографических характеристик на каждой итерации алгоритма.

Экспериментально получены 8-битовые 6-равномерные подстановки с нелинейностью 108.

Актуальность

- Векторные булевы функции (S-блоки) одни из основных примитивов современных симметричных шифров, обеспечивающих свойство перемешивания 1 .
- При этом биективные S-блоки (подстановки) представляют наибольший интерес для использования в современных симметричных шифрах.
- S-блоки должны иметь криптографические характеристики, гарантирующие неосуществимость применения известных методов (в частности, разностного и линейного методов) криптографического анализа.

Так, S-блоки с высокой нелинейностью позволяют гарантировать стойкостью к линейному криптографическому анализу. А для конструирования криптографических алгоритмов, стойких к разностному анализу, используют S-блоки с минимально возможным показателем дифференциальной δ -равномерности.

¹ Shannon C.E. Communication theory of secrecy systems // Bell System Technical Journal. – 1949. – Vol. 28. – P. 656–715.

Актуальность

- Построение подстановок размерности $n \ge 8$ бит с криптографическими характеристиками, гарантирующими стойкость шифров к разностному и линейному методам криптоанализа, является сложной задачей, что подтверждается большим количеством новейших научных публикаций и докладов на всероссийских и международных конференциях посвященных данной тематике.
- 8-битовые подстановки используются в современных криптографических алгоритмах, например, ГОСТ 34.12-2018 "Кузнечик", AES, BelT и других.

Определения и обозначения

- V_n n-мерное векторное пространство над полем из двух элементов \mathbb{F}_2 , $V_n^\times = V_n \setminus \{0\}.$
- \mathbb{F}_{2^n} конечное поле из 2^n элементов. Операции сложения и умножения в поле \mathbb{F}_{2^n} будем обозначать знаками "+" и "·" соответственно.
- Конкатенацию двух векторов $a\|b \in V_{n+m} \ a \in V_n, b \in V_m$ будем обозначать $a\|b \in V_{n+m}.$
- Скалярным произведением двух векторов $a,b \in V_n$ называется элемент поля \mathbb{F}_2 , вычисляемый по формуле $\langle a,b \rangle = a_{n-1}b_{n-1} + \ldots + a_0b_0$.
- lacksquare Векторной булевой (n,m)-функцией называется преобразование $V_n o V_m.$
- *Подстановкой* называется биективная (n,n)-функция. $S(V_n)$ симметрическая группа всех подстановок пространства V_n .

Мономиальные подстановки поля \mathbb{F}_{2^m} это подстановки вида x^d , где d — такое положительное целое, что $\gcd(d,2^m-1)=1$. В частности, для m=4 мономиальные подстановки получаются для $d\in\{1,2,4,7,8,11,13,14\}$.

При этом, если $d \in \{1, 2, 4, 8\}$, то x^d задает линейную подстановку.

Определения и обозначения

- Транспозиция это цикл длины 2. Умножение подстановки G на транспозицию справа $G \circ (i_1, i_2)$ приводит к транспозиции элементов i_1 и i_2 в верхней строке подстановки G 2 [c. 51], другими словами, в нижней строке подстановки G меняются местами образы элементов i_1 и i_2 .
- Индикаторной функцией $I_b(x)$ для $b, x \in V_n$ называется

$$I_b(x) = \begin{cases} 1, & b = x, \\ 0, & b \neq x. \end{cases}$$

²Кострикин А.И. Введение в алгебру. Ч. І. Основы алгебры: учебник для вузов. 3-е изд. М.: Физматлит, 2004. С. 272.

О некоторых криптографических характеристиках подстановок

Определение

Подстановка $F \in S(V_n)$ называется дифференциально δ_F -равномерной, если

$$\delta_F = \max_{a \in V_n^{\times}, b \in V_n} \delta_F(a, b),$$

где
$$\delta_F(a,b) = |\{x \in V_n : F(x+a) + F(x) = b\}|.$$

Значение δ_F называется показателем дифференциальной равномерности подстановки F.

Определение

Таблицей распределения разностей (Difference Distribution Table — DDT) подстановки F называется такая $2^n \times 2^n$ таблица DDT_F , что $DDT_F[a,b] = \delta_F(a,b)$.

Определение

Для всех элементов $\delta \in \{0,2,\ldots,2^n\}$ определим множества

$$D_F(\delta) = \{(a,b) \in V_n^{\times} \times V_n : \delta_F(a,b) = \delta\}.$$

Разностным спектром подстановки F называется множество пар $D_F = \{(\delta, |D_F(\delta)|)\}.$

О некоторых криптографических характеристиках подстановок

Определение

Преобразованием Уолша — Адамара $W_F(a,b)$ подстановки $F\in S(V_n)$ называется отображение $W_F:V_n\times V_n\to \mathbb{Z}$, заданное равенством

$$W_F(a,b) = \sum_{x \in V_n} (-1)^{\langle a,x \rangle + \langle b,F(x) \rangle}$$
 для любых $a,b \in V_n$.

Определение

Линейность ℓ_F подстановки F определяется как

$$\ell_F = \max_{a \in V_n, b \in V_n^{\times}} |W_F(a, b)|.$$

Нелинейность N_F подстановки F вычисляется по формуле $N_F=2^{n-1}-\frac{1}{2}\ell_F.$

О некоторых криптографических характеристиках подстановок

Определение

Таблицей линейных приближений (Linear Approximation Table — LAT) подстановки F называется такая $2^n \times 2^n$ таблица LAT_F , что $LAT_F[a,b]=\ell_F(a,b)$, где

$$\ell_F(a,b) = \left| \left\{ x \in V_n : \langle a, x \rangle = \langle b, F(x) \rangle \right\} \right| - 2^{n-1} = \frac{1}{2} W_F(a,b).$$

Определение

Для всех элементов $\ell \in \{0,2,\dots,2^{n-1}\}$ определим множества

$$L_F(\ell) = \{(a, b) \in V_n \times V_n^{\times} \mid |\ell_F(a, b)| = \ell\}.$$

Линейным спектром подстановки F называется множество пар $L_F = \{(\ell, |L_F(\ell)|)\}.$

Цитируемые работы

Yuyin Yu, Mingsheng Wang, and Yongqiang Li, Constructing differential 4-uniform permutations from know ones, Cryptology ePrint Archive, Report 2011/047. 2011. https://eprint.iacr.org/2011/047

Menyachikhin A. V. Spectral-linear and spectral-differential methods for generating S-boxes having almost optimal cryptographic parameters // Матем. вопр. криптогр. 2017. Т. 8, Вып. 2. С. 97–116.

Menyachikhin A. V. The change in linear and differential characteristics of substitution after the multiplication by transposition // Матем. вопр. криптогр. 2020. Т. 11, № 2. С. 111–123.

Фомин Д. Б. О подходах к построению низкоресурсных нелинейных преобразований // Обозрение прикладной и промышленной математики. 2018. Т. 25, Вып. 4. С. 379–381.

Фомин Д. Б. Об алгебраической степени и дифференциальной равномерности подстановок пространства V_{2m} , построенных с использованием (2m, m)-функций // Матем. вопр. криптогр. 2020. Т. 11, N 4. С. 133-149.

Обобщенная конструкция

Рассмотрим (2m,2m)-функцию $F(x_1,x_2)=y_1\|y_2$, где $x_1,x_2,y_1,y_2\in V_m$, задаваемую следующей обобщённой конструкцией, впервые введенной в 3 :

$$y_{1} = G_{1}(x_{1}, x_{2}) = \begin{cases} x_{1}^{\alpha} \cdot x_{2}^{\beta}, & x_{2} \neq 0, \\ \widehat{\pi}_{1}(x_{1}), & x_{2} = 0, \end{cases}$$

$$y_{2} = G_{2}(x_{1}, x_{2}) = \begin{cases} x_{1}^{\gamma} \cdot x_{2}^{\delta}, & x_{1} \neq 0, \\ \widehat{\pi}_{2}(x_{2}), & x_{1} = 0. \end{cases}$$

$$(1)$$

В силу существования взаимно-однозначного отображения $V_m \to \mathbb{F}_{2^m}$ в (1) и далее операции возведения в степень и умножения производятся в поле \mathbb{F}_{2^m} .

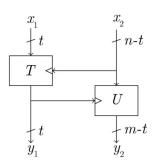
Параметрами функции (1) являются набор показателей степеней $(\alpha,\beta,\gamma,\delta)$ мономиальных подстановок и значения подстановок $\widehat{\pi}_1,\widehat{\pi}_2\in S(V_m)$. Без ограничения общности будем предполагать, что

$$\hat{\pi}_1(0) = 0, \quad \hat{\pi}_2(0) = 0.$$
 (2)

 $^{^{3}}$ Фомин Д.Б. О подходах к построению низкоресурсных нелинейных преобразований //Обозрение прикладной и промышленной математики. 2018. Т. 25, Вып. 4. С. 379–381.

Обобщенная конструкция

Отметим, что конструкция (1) основана на структуре типа «бабочка», предложенной в 4 , и полученной при изучении декомпозиции APN-подстановки Диллона 5 . Обобщенная конструкция допускает TU-представление 6 .



⁴ Biryukov A., Perrin L., and Udovenko A. "Reverse-engineering the s-box of Streebog, Kuznyechik and STRIBOBr1" // LNCS. 2016. V. 9665. P. 372–402.

⁵ Browning K. A., Dillon J. F., McQuistan M. T., and Wolfe A. J. An APN permutation in dimension six // 9th Int. Conf. Finite Fields Appl. 2009. Contemp. Math. 2010. V. 518. P. 33–42.

⁶ Canteaut A., Perrin L. "On ccz-equivalence, extended-affine equivalence, and function twisting", Cryptology ePrint Archive, Report 2018/713. https://eprint.iacr.org/2018/713.

Этап 1. Два условия отбраковки функций, задаваемых обобщенной конструкцией

Параметры обобщенной конструкции (1) — набор показателей степеней $(\alpha,\beta,\gamma,\delta)$ мономиальных подстановок и значения подстановок $\widehat{\pi}_1,\widehat{\pi}_2\in S(V_m)$ — выбираются независимо друг от друга.

В работе 7 в случае m=4 на множестве наборов $(\alpha,\beta,\gamma,\delta)$ было введено отношение эквивалентности и получено разбиение этого множества на непересекающиеся классы. Обоснованы утверждения, позволяющие по одному представителю класса эквивалентности

- отбраковать функции, у которых показатель дифференциальной δ -равномерности $\delta_F \geqslant 8$ (при m=4);
- **2** среди оставшихся функций отбраковать те, которые не являются подстановками.

⁷Fomin D., Kovrizhnykh M. "On Differential Uniformity of Permutations Derived Using a Generalized Construction" // X симпозиум «Современные тенденции в криптографии» СТСгурt 2021. https://ctcrypt.ru/files/files/2021/Fomin_Kovrizhnylh.pdf

Сводная таблица классов эквивалентности при m=4

Nº	Представитель класса	Количество	Причина отбраковки
	эквивалентности	элементов в классе	
		эквивалентности	
1	Обобщенный	1792	$\delta_F \geqslant 14$
	представитель:		
	$(\alpha, \beta, \gamma, \delta),$		
	где $\alpha, \gamma \in \{1, 2, 4, 8\}$		
2	(7,7,7,7)	64	$\delta_F \geqslant 14$
3	(11,1,1,13)	128	$\delta_F \geqslant 14$
4	(7,1,1,7)	128	$\delta_F \geqslant 14$
5	(7,7,7,13)	64	
6	(1,7,7,7)	256	
7	(4,7,7,7)	256	
8	(7,7,2,2)	128	не является подстановкой
9	(1,1,7,13)	128	
10	(2,7,7,7)	256	
11	(7,2,2,7)	128	
12	(1,1,7,11)	256	
13	(1,7,7,11)	256	не отбракованы
14	(1,7,7,2)	128	
15	(7,7,7,11)	128	

Этап 2. О подборе вспомогательных 4-битовых подстановок в обобщенной конструкции

Осталось научиться выбирать вспомогательные подстановки $\widehat{\pi}_1$ и $\widehat{\pi}_2$ так, чтобы итоговая 8-битовая подстановка F (1) имела $\delta_F=6,\,N_F=108.$

Предложен эвристический подход, использующий идеи спектрально-линейного и спектрально-разностного методов 8 :

- 1. начальные случайно сгенерированные 4-битовые подстановки $\widehat{\pi}_i$ итеративно умножаются на транспозиции;
- 2. среди полученных 8-битовых подстановок отбираются лучшие по нелинейности, показателю дифференциальной равномерности и соответствующим значениям в линейном и разностном спектрах;
 - 3. если заданные характеристики $\delta_F \leqslant 6$ и $N_F \geqslant 108$ достигнуты, выход;
- 4. 4-битовые подстановки $\widehat{\pi}_i$, соответствующие лучшим на 2-м шаге, итеративно умножаются на транспозиции, переходим к шагу 2;

⁸ Menyachikhin A.V. Spectral-linear and spectral-differential methods for generating S-boxes having almost optimal cryptographic parameters //Матем. вопр. криптогр. 2017. Т. 8, Вып. 2. С. 97–116.

Эвристический алгоритм поиска $\widehat{\pi}_1$, $\widehat{\pi}_2$

Алгоритм 1.

Вход: Подстановка $F \in S(V_8)$, построенная по формулам (1) с использованием одного из 768 наборов параметров $(\alpha, \beta, \gamma, \delta)$ [3] и произвольных 4-битовых подстановок $\widehat{\pi}_1$, $\widehat{\pi}_2$ (2), с криптографическими характеристиками $\ell_F > 40$ или $\delta_F > 6$.

Параметры: Num_Trans — количество умножений на транспозиции, Num_Best — количество отбираемых пар $(\widehat{\pi}_1, \widehat{\pi}_2)$ на каждой итерации алгоритма.

- 1: Сформировать список Best из одной пары подстановок $(\widehat{\pi}_1, \widehat{\pi}_2)$.
- 2: Для всех пар подстановок $(\widehat{\pi}_1, \widehat{\pi}_2)$ из списка Best:
- 3: запомнить пару $(\widehat{\pi}_1, \widehat{\pi}_2)$ как просмотренную;
- 4: псевдослучайно выбрать номер $t \in \{1, 2\}$.
- \mathbf{Z} ля $i = 1, ..., Num_Trans$
- 6: псевдослучайно выбрать $x, y \in V_4^{\times}, x \neq y$, получить подстановку $\widehat{\pi}_t = \widehat{\pi}_t \circ (x, y)$.
- Если пара $(\widehat{\pi}_1, \widehat{\pi}_2)$ ещё не просмотрена, то
- в: встроить $\widehat{\pi}_t$ в F;
- 9: вычислить набор характеристик подстановки $(\ell_F, \delta_F, |L_F(\ell_F/2)|, |D_F(\delta_F)|);$
 - о: добавить пару $(\hat{\pi}_1, \hat{\pi}_2)$ в список Best.
- 11: Отобрать (по принципу многоуровневой сортировки по возрастанию) Num_Best лучших (т. е. с меньшими значениями с учётом приоритетов) из всех наборов характеристик подстановок F, порождённых парами $(\widehat{\pi}_1, \widehat{\pi}_2)$ из текущего списка Best, считая, что в наборе приоритет убывает от ℓ_F к $|D_F(\delta_F)|$.
- 12: **Если** в наилучшем наборе значения $\ell_F = 40$ и $\delta_F = 6$, то
- 13: Вывести подстановки $\hat{\pi}_1, \hat{\pi}_2$, порождающие подстановку F,
- 14: иначе
- 15: Сформировать новый список Best из Num_Best пар подстановок $(\widehat{\pi}_1,\widehat{\pi}_2)$, соответствующих лучшим наборам, отобранным на шаге 11.
- 16: Перейти к шагу 2.

Выход: Подстановка $F \in S(V_8)$, отличающаяся от исходной только значениями подстановок $\widehat{\pi}_1$, $\widehat{\pi}_2$, такая, что

$$\ell_F = 40 \quad (N_F = 108), \qquad \delta_F = 6.$$
 (3)

Значения Num_Trans , Num_Best являются параметрами алгоритма. Вычислительные эксперименты показали, что при $Num_Best=10$, $Num_Trans=500$ на первой итерации и $Num_Trans=100$ на последующих за приемлемое число итераций можно получить 8-битовые подстановки с характеристиками $N_F=108$, $\delta_F=6$ и алгебраической степенью 7.

Некоторые результаты работы программы

$(\alpha, \beta, \gamma, \delta)$	Количество	Полученные $\widehat{\pi}_1,\widehat{\pi}_2$
	итераций	
	алгоритма	
	до достижения	
	$N_F = 108, \delta_F = 6$	
(1,1,7,11)	16	$\widehat{\pi}_1 = [0, 10, 6, 3, 14, 2, 5, 4, 9, 15, 7, 13, 8, 1, 12, 11]$
		$\widehat{\pi}_2 = [0, 1, 7, 14, 2, 9, 6, 12, 13, 3, 4, 5, 10, 15, 11, 8]$
(1,2,13,7)	31	$\widehat{\pi}_1 = [0, 3, 11, 1, 4, 10, 8, 5, 2, 13, 9, 14, 7, 6, 15, 12]$
		$\widehat{\pi}_2 = [0, 6, 1, 7, 10, 8, 9, 12, 2, 11, 5, 13, 3, 4, 15, 14]$
(1,1,7,11)	50	$\widehat{\pi}_1 = [0, 3, 13, 14, 6, 8, 2, 15, 4, 1, 12, 7, 9, 5, 10, 11]$
		$\widehat{\pi}_2 = [0, 7, 2, 11, 9, 4, 10, 13, 3, 5, 6, 8, 1, 14, 15, 12]$
(7,7,11,13)	56	$\widehat{\pi}_1 = [0, 1, 14, 7, 8, 9, 3, 4, 6, 11, 15, 5, 12, 10, 13, 2]$
		$\widehat{\pi}_2 = [0, 12, 6, 11, 4, 8, 13, 3, 1, 5, 14, 7, 15, 10, 9, 2]$
(1,2,13,7)	63	$\widehat{\pi}_1 = [0, 15, 8, 1, 14, 4, 5, 6, 7, 2, 11, 10, 9, 13, 3, 12]$
		$\widehat{\pi}_2 = [0, 2, 9, 11, 7, 8, 5, 13, 3, 6, 15, 12, 10, 1, 4, 14]$
(1,1,7,11)	111	$\widehat{\pi}_1 = [0, 14, 6, 12, 2, 10, 5, 11, 7, 8, 4, 1, 9, 13, 15, 3]$
		$\widehat{\pi}_2 = [0, 11, 14, 5, 4, 6, 15, 3, 9, 1, 10, 7, 13, 8, 2, 12]$
(4,4,14,7)	134	$\widehat{\pi}_1 = [0, 2, 13, 4, 8, 14, 10, 9, 7, 6, 12, 11, 15, 5, 3, 1]$
		$\widehat{\pi}_2 = [0, 15, 10, 14, 5, 8, 3, 11, 1, 13, 12, 7, 9, 6, 2, 4]$

Об оптимизации вычисления криптографических характеристик на каждой итерации

При этом исследованы вопросы оптимизации вычисления линейного и разностного спектров на каждой итерации алгоритма.

Результаты из работы 9 применены для определения ячеек в DDT и LAT 8-битовой подстановки (1), в которых возникают изменения значений при умножении на транспозицию только 4-битовой подстановки $\widehat{\pi}_1$ или $\widehat{\pi}_2$.

Сформулированы утверждения о величинах получающихся разностей в ячейках DDT и LAT.

На основе этих утверждений указаны ячейки в DDT и LAT, которые не изменяются при умножении на транспозицию подстановки $\widehat{\pi}_1$ (или $\widehat{\pi}_2$), что позволяет экономить память при хранении DDT и LAT в алгоритмах⁵ вычисления линейного и разностного спектров.

⁹ *Menyachikhin A*. The change in linear and differential characteristics of substitution multiplied by transposition [Электронный ресурс] // VIII симпозиум «Современные тенденции в криптографии» СТСгурт 19. 2019.

Об оптимизации вычисления криптографических характеристик на каждой итерации

Утверждение 1

Пусть 8-битовая подстановка $G=G(x_1,x_2)=y_1\|y_2$ задана обобщенной конструкцией с параметрами $(\alpha,\beta,\gamma,\delta)$ из одного из четырех неотбракованных классов и произвольными 4-битовыми подстановками $\widehat{\pi}_1,\widehat{\pi}_2$ (2), а подстановка H получена из G одной транспозицией подстановки $\widehat{\pi}_2$, m. e.

$$H = G \circ (0||x, 0||y), \quad x, y \in V_4^{\times}, \quad x \neq y.$$
 (3)

Пусть $a\in V_8^{\times}$, $b\in V_8$ — произвольные, при этом $a=a_1\|a_2,b=b_1\|b_2$, тогда выполняются соотношения

$$\delta_{H}(a,b) - \delta_{G}(a,b) = \begin{cases} 0, & a_{1} = 0, b_{1} \neq 0, \\ 0, & a_{1} = 0, b_{1} = 0, a_{2} = x + y, \\ 2(I_{1} + I_{3} - I_{0} - I_{2}), & a_{1} = 0, b_{1} = 0, a_{2} \neq x + y, \\ 2(\widetilde{I}_{1} + \widetilde{I}_{3} - \widetilde{I}_{0} - \widetilde{I}_{2}), & a_{1} \neq 0, \end{cases}$$

$$(4)$$

где

$$\begin{split} I_{1} &:= I_{b_{2}}(\widehat{\pi}_{2}(x+a_{2})+\widehat{\pi}_{2}(y)), & I_{3} := I_{b_{2}}(\widehat{\pi}_{2}(y+a_{2})+\widehat{\pi}_{2}(x)), \\ I_{0} &:= I_{b_{2}}(\widehat{\pi}_{2}(x+a_{2})+\widehat{\pi}_{2}(x)), & I_{2} := I_{b_{2}}(\widehat{\pi}_{2}(y+a_{2})+\widehat{\pi}_{2}(y)), \\ \widetilde{I}_{1} &:= I_{b}(g_{1,x}\|(g_{2,x}+\widehat{\pi}_{2}(y))), & \widetilde{I}_{3} := I_{b}(g_{1,y}\|(g_{2,y}+\widehat{\pi}_{2}(x))), \\ \widetilde{I}_{0} &:= I_{b}(g_{1,x}\|(g_{2,x}+\widehat{\pi}_{2}(x))), & \widetilde{I}_{2} := I_{b}(g_{1,y}\|(g_{2,y}+\widehat{\pi}_{2}(y))), \\ G(a_{1},x+a_{2}) &:= (g_{1,x}\|g_{2,x}), & G(a_{1},y+a_{2}) := (g_{1,y}\|g_{2,y}). \end{split}$$
 (5)

Об оптимизации вычисления криптографических характеристик на каждой итерации

Утверждение 2

Пусть 8-битовая подстановка $G=G(x_1,x_2)=y_1\|y_2$ построена по формулам (1) с параметрами $(\alpha,\beta,\gamma,\delta)$ из одного из четырех неотбракованных классов и произвольными 4-битовыми подстановками $\widehat{\pi}_1$, $\widehat{\pi}_2$ (2), а подстановка H получена из G одной транспозицией подстановки $\widehat{\pi}_2$, m. e.

$$H = G \circ (0||x, 0||y), \quad x, y \in V_4^{\times}, \quad x \neq y.$$

Пусть $a \in V_8, \, b \in V_8^{\times}$ — произвольные, при этом $a = a_1 \| a_2, b = b_1 \| b_2$, тогда выполняются соотношения

$$\ell_H(a,b) - \ell_G(a,b) = \begin{cases} 0, & \langle a_2, x + y \rangle = 0 \text{ или } \langle b_2, \widehat{\pi}_2(x) + \widehat{\pi}_2(y) \rangle = 0, \\ (-1)^{\langle a_2, x \rangle + \langle b_2, \widehat{\pi}_2(x) \rangle + 1} \cdot 2, \text{ в противном случае.} \end{cases}$$
(6)

Спасибо за внимание!

Заметим, что множества $\{1,2,4,8\}$ и $\{7,11,13,14\}$ замкнуты относительно умножения на $d\in\{1,2,4,8\}$ по $\mod 15$.

 $8^4=4096$ всевозможных наборов $(\alpha,\beta,\gamma,\delta)$ параметров преобразований из семейства (1) разбиваются на непересекающиеся классы эквивалентности. При этом отдельный класс эквивалентности можно получить по одному его представителю $(\alpha,\beta,\gamma,\delta)$, составляя различные наборы из следующих

$$(\alpha \cdot d_1 \cdot d_3, \quad \beta \cdot d_1 \cdot d_4, \quad \gamma \cdot d_2 \cdot d_3, \quad \delta \cdot d_2 \cdot d_4) \mod 2^m - 1,$$

$$(\gamma \cdot d_1 \cdot d_3, \quad \delta \cdot d_1 \cdot d_4, \quad \alpha \cdot d_2 \cdot d_3, \quad \beta \cdot d_2 \cdot d_4) \mod 2^m - 1,$$

$$(\beta \cdot d_1 \cdot d_3, \quad \alpha \cdot d_1 \cdot d_4, \quad \delta \cdot d_2 \cdot d_3, \quad \gamma \cdot d_2 \cdot d_4) \mod 2^m - 1,$$

$$(\delta \cdot d_1 \cdot d_3, \quad \gamma \cdot d_1 \cdot d_4, \quad \beta \cdot d_2 \cdot d_3, \quad \alpha \cdot d_2 \cdot d_4) \mod 2^m - 1,$$

где m=4, $d_1, d_2, d_3, d_4 \in \{1, 2, 4, 8\}$.

Среднее время работы итерации алгоритма

Intel(R) Core(TM) i7 CPU @ 1.8GHz 4 ядра RAM 12Gb Python 3.8.10

При значениях параметров $Num_Best=10$, $Num_Trans=100$ (начиная со 2-й итерации) одна итерация алгоритма в среднем вычисляется за ~ 9 минут.

Definition. Алгебраической степенью deg(F) (n,m)-функции F называется минимальная степень многочлена Жегалкина среди всевозможных линейных комбинаций ее координатных функций $\langle a,F(x)\rangle$ по всем $a\in V_m^\times$:

$$deg(F) = \min_{a \in V_m^{\times}} deg(\langle a, F(x) \rangle).$$

Для подстановок $G \in S(V_n)$ максимально возможная степень нелинейности равна n-1.