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Low-resource nonlinear bijective transformations

The most commonly used approaches for evaluating the low resourceless of nonlinear
transformations are:

nonlinear complexity
gate-complexity
bitslice-complexity
combinational complexity

There are three main approaches to construct permutations with given performance
characteristics:

full search (with optimizers)
heuristic search
use of simple algebraic (monomial) permutations
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Metrics

Definition
The combinational complexity of a function f in the basis Ω, denoted by CΩ(f ), is the
minimal number of elements of the basis Ω sufficient for realization of the function f by
a logic circuit.

Definition
The circuit depth (or just depth) of the function f in the basis Ω, denoted by DΩ(f ), s the
number of logical elements located on the longest oriented path of the graph
representing the logical scheme.

Remark
In this work we use the following basis: Ω = {∧,∨,⊕,¬}.
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Some bases I

Definition
Let α be an element of the field F2n such that the set

!
αi
"m−1
i=0 is the basis of F2n over F2k .

In this case it is said that
!
αi
"m−1
i=0 is the polynomial basis of the field F2n over F2k and α

is called the generator of the polynomial basis.

Hereinafter a polynomial basis is denoted by Poly.

Definition

Let α be an element of the field F2n such that the set
#
α2i

$m−1

i=0
is the basis of F2n over

F2k . In this case it is said that
#
α2i

$m−1

i=0
is the normal basis of the field F2n over F2k and α

is called the generator of the normal basis.

Hereinafter a normal basis is denoted by Norm.
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Some bases II

One of the most effective way to reduce combinatorial complexity and depth of functions
implementing field operations is to use the field tower theorem as in 1.

The elements of the field F28 can be represented as a vector F2
24 ,and the elements of the

field F24 consider as a vector F2
22 , etc.

Thus, the elements of the field F28 can be represented by vectors from the set
%&

F2
2
'2(2

.

1Yasuyuki Nogami, Kenta Nekado, Tetsumi Toyota, Naoto Hongo, and Yoshitaka Morikawa. Mixed

bases for efficient inversion in GF
!"

22
#2$2

and conversion matrices of subbytes of aes. IEICE Trans.
Fundam. Electron. Commun. Comput. Sci., 94-A(6):1318–1327, 2011.
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Important remark

In this work we will evaluate the combinatorial complexity and depth of functions
realizing some functions over the field.

Since the type of function directly depends on the basis and the field over which the
transformation is considered, let us introduce additional notations:

CΩ (f ;FF; Basis)

and
DΩ (f ;FF; Basis)

will denote the combinational complexity and depth of the function f , defined over the
field FF in the basis Basis.
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Some classes of permutations I

x 1 x 2

y1 y2

11

22

^

^

Figure: Type “A” permutation

x 1 x 2

1

y1 y2

2

 1

2

^

^
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Some classes of permutations II

Consider a family of permutations, the parameters of which are four degrees: (α, β, γ, δ)
and permutations )πi, i ∈ 1, 2: Consider a family of permutations, the parameters of
which are four degrees: (α, β, γ, δ) and permutations )πi, i ∈ 1, 2:

G1 (x1, x2) = y1 =

*
xα1 · xβ2 , x2 ∕= 0
)π1 (x1) , x2 = 0

,

G2 (x1, x2) = y2 =

*
xγ1 · xδ2, x1 ∕= 0
)π2 (x2) , x1 = 0

.

(1)
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Some classes of permutations III

Such a representation of type “A” and type “B” permutations potentially reduces the
depth of the function implementing the permutation.

Moreover, among all known permutations from the proposed families, the following
permutation G(x1, x2) = (y1, y2) from the parametric family «G» has the minimum
number of nonlinear transformations used and is set as follows:

1 x′ = x−1
1

2 y′ = x−1
2

3 x′′ = x1 · y′

4 y′′ = x′ · y′

5 if x = 0 then y1 = y′ else y1 = y′′

6 if x = y then y2 = x′ else y2 = x′′
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Some classes of permutations IV

Algorithm/Constructing way NS δS deg(S) AIgr
«AES» 112 4 7 2
«Kuznyechik» 100 8 7 3
<BelT» 102 8 6 3
«SNOW 3G» (SQ) 96 8 5 3
Spectral-linear and specrral-
differential methods

104 6 7 3

Permutations from considering
classes

108 6 7 3

Permutations from2 108 6 7 3
Permutations from3 108 4 6 3

2Cruz Jiménez, R. A. de la. Generation of 8-bit S-Boxes having almost optimal cryptographic properties
using smaller 4-bit S-Boxes and finite field multiplication

3D. Burov, S. Kostarev and A. Menyachikhin Class of piecewise-monomial mappings: differentially 4-
uniform permutations on F28 with graph algebraic immunity 3 exist. CTCrypt’23, 2023
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One more important remark

Permutations )π1, )π2 in the parametric families of types “A”, “B” and “G” in 4 is proposed
to choose using a heuristic search.

Remark
In this paper an experimental study of affine equivalence classes of )π1, )π2 for the
considered parametric families was carried out in the case of construction of the
permutation of space F8

2. This can be done since there is a complete classification of
permutations for the space F4

2. Experimental results have shown that in the vast majority
of cases the mentioned permutations belong to only two families of F4

2 permutations with
representatives x14 and x7 + x4 + x. Thus, it is of interest to find the complexity of the
mentioned permutations.

4Kovrizhnykh M. A. and Fomin D. B. Heuristic algorithm for obtaining permutations with given
cryptographic properties using a generalized construction Applied Discrete Mathematics., 57:P. 5–21, 2022.
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Comparisons

x 1 x 1x 2 x 2

111

y1y1 y2y2

22 2

 1

2

^

^

^

^

Figure: Type “A” and “B” permutations
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aCruz Jiménez, R. A. de la. Generation of 8-bit S-Boxe
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Comparisons

15

5Oliver Coy Puente and Reynier A. de la Cruz Jiménez. On the Bit-Slice representations of some
nonlinear bijective transformations. CTCrypt’23, 2023.

t
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Known results about computational work in the LUT-6 basis

It is known6 that:
Random permutation S : F8

2 → F8
2 can be implemented using 40 LUTs (about 812

GE)
Permutations of “A” class can be implemented using only 19 LUTs (about 147 GE)

Class “A”, “B” and “C” permutations are effectively implemented by the FPGA.

6D.B. Fomin, D.I. Trifonov. Hardware implementation of one class of 8-bit permutations Prikladnaya
Diskretnaya Matematika. Supplement, 134-137



15/31

Computational work fore some functions over the field F
(22)2 I

Let «·» — be the multiplication operation in the field F(22)2 , defined by an irreducible
polynomial g(x) = x2 + x+ α in the polynomial basis {1,β}.

Then for x, y ∈ F(22)2 CΩ

%
x · y;F(22)2 ; Poly

(
≤ 30, DΩ

%
x · y;F(22)2 ; Poly

(
≤ 5.

For x, y ∈ F(22)2 CΩ

%
x · y;F(22)2 ; PtN

(
≤ 30, DΩ

%
x · y;F(22)2 ; PtN

(
≤ 5.
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Computational work fore some functions over the field F
(22)2 II

Metric: C D
Basis: Poly Norm NtP Poly Norm NtP
x2 ≤ 3 ≤ 4 ≤ 4 ≤ 2 ≤ 2 ≤ 2
x4 ≤ 2 0 ≤ 2 1 0 1
x7 ≤ 29 ≤ 29 ≤ 29 ≤ 8 ≤ 7 ≤ 7
x8 ≤ 3 ≤ 4 ≤ 4 ≤ 2 ≤ 2 ≤ 2
x11 ≤ 26 ≤ 26 ≤ 26 ≤ 8 ≤ 7 ≤ 7
x13 ≤ 29 ≤ 29 ≤ 29 ≤ 8 ≤ 7 ≤ 7
x14 ≤ 26 ≤ 26 ≤ 26 ≤ 8 ≤ 7 ≤ 7
x7 + x4 + x ≤ 31 ≤ 29 ≤ 29 ≤ 9 ≤ 7 ≤ 7



17/31

Computational work for MUX I

According to the definition of the parametric families of types “A”, “B” and “G” a
calculation similar to the following occurs:
«if x1 = 0 then y = )π(x0) else y = π2(π0(x0) · π1(x1))»,
where π0, π1, π2, )π are bijective permutations of F4

2.

The combinational complexity of F(x0, x1) = Ind0(x1) · )π(x0) + π2(π0(x0) · π1(x1)) is
estimated by:

CΩ ()π) + CΩ (π2(π0(x0) · π1(x1))) + 12.

The depth of the function that implements the above formula is equal:

max {4,DΩ ()π) + 2,DΩ (π2(π0(x0) · π1(x1))) + 1} .
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Computational work estimation for some parametric families of permutations I

To implement a permutation from the parametric family of type “G” it is necessary to
implement two functions, each of which consists of three permutations (two of them
monomial), an operation of multiplication and a multiplexer. The combinational
complexity of such a permutation is estimated by the following value:

CΩ(xα) + CΩ(xβ) + CΩ(xγ) + CΩ(xδ) + 2CΩ(·) + CΩ ()π1) + CΩ ()π2) + 2CΩ(MUX) ≤
≤ 4 · CΩ(x7) + 2CΩ(·) + 2CΩ(x7 + x4 + x) + 2 · 30+ 2 · 12 = 322.
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Computational work estimation for some parametric families of permutations II

This value can be greatly overestimated. Consider the following permutation
S(x1, x2) = (y1, y2):

y1 =

*
x1 · x22, x2 ∕= 0
x−1
1 , x2 = 0

,

y2 =

*
x−1
1 · x−1

2 , x1 ∕= 0
x−1
2 , x1 = 0

.

Its combinational complexity in the considered basis obviously does not exceed 147.

At the same depth, the permutation G defined earlier has combinational complexity
equal to 144.
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Computational work estimation for some parametric families of permutations III

Let us estimate the depth of the formula specifying a permutation from a parametric
family of type “G”:

max
#
4,DΩ ()π1) + 2,DΩ ()π2) + 2,DΩ

%
xα1 · xβ2

(
+ 1,DΩ

&
xγ1 · xδ2

'
+ 1

$
≤

≤ max
#
4, 8+ 6+ 2,max

#
DΩ (xα1 ) ,DΩ

%
xβ2
(
,DΩ (xγ1 ) ,DΩ

&
xδ2
'$

+ 6
$
≤

≤ max {4, 8+ 6+ 2, 8+ 6} ≤ 16.
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sboxgates

sboxgates7 is a very powerful tool for finding bitclise
implementations of functions Fn

2 → Fm
2 , n,m ≤ 8

7Marcus Dansarie. sboxgates: A program for finding low gate count implementations of S-boxes. Journal
of Open Source Software vol.6:62, pages 2946, 2021



22/31

Computational work estimation for Kuznyechik using sboxgates

Today new bitslice representation of Kuznyechik s-
box have been presented by Oliver Coy Puente and
Reynier A. de la Cruz Jiménez:

Operation C
α 9
ω 5
I 20
ν0 19
ν1 12
φ 18
σ 19
MUX 15
⊙ 31
Total: 179
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Computational work estimation for Kuznyechik using sboxgates

sboxgates realizes a heuristic search algorithm:

Operation C
α 9
ω 5
I 20
ν0 19
ν1 12
φ 18
σ 19
MUX 15
⊙ 31
Total: 179

К 17

Х 177



24/31

Computational work estimation for Kuznyechik using sboxgates

Ind(r = 0) · (ν0(l))) ⊕ Ind(r = 0) · ν1 (l · I(r)) =
= Ind(r = 0) · (ν0(l)⊕ ν1(0)))⊕ ν1 (l · I(r))

Let’s denote ν0(l) + ν1(a) as ν ′
0(l):

Operation C
α 9
ω 5
I 20
ν0 19
ν1 12
φ 18
σ 17
MUX 15
⊙ 31
Total: 177

Х 20

Х 12

7175
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Computational work estimation for Kuznyechik using sboxgates

Add NOT operator:

Operation C
α 9
ω 5
I 20
ν ′
0 20
ν1 12
φ 18
σ 17
MUX 12
⊙ 31
Total: 175

Х 19

Е

Х 172
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Computational work estimation for Kuznyechik using sboxgates

Result:

Operation C
α 9
ω 5
I 19
ν ′
0 19
ν1 11
φ 18
σ 17
MUX 12
⊙ 31
Total: 172



27/31

Computational work estimation for Kuznyechik using sboxgates and tower field math

There are 8 different linear transformations from F24

to F(22)2 (using x2 + x+ α and x2 + x+ α2 irreducible
polynomials for F22 . )

As we know: CΩ

%
x · y;F(22)2 ; Poly

(
≤ 30 vs

CΩ (x · y;F24 ; Poly) ≤ 31.
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Computational work estimation for Kuznyechik using sboxgates and tower field math

Let si be a linear permutation from polynomial
representation of F24 to tower field representation
F(22)2 and sp = si−1

Then we can consider new permutations:
)α(x) = si[α(x)&0x3]⊕ (si[α(x) ≫ 3] ≪ 3)
)I = si[I[sp[x]]]
)ν ′
0(x) = ν ′

0[sp[x]]
)ν1(x) = ν1[sp[x]]
)φ(x) = si[φ[x]]
)σ(x) = σ[sp[x]]
)ω(x) = ω(x)
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Computational work estimation for Kuznyechik using sboxgates and tower field math

Result:

Operation C D
)α 11 5
)ω 5 2
)I 16 10
)ν ′
0 19 11
)ν1 11 7
)φ 16 9
)σ 19 12
MUX 12 2
⊙ 30 5
Total: 169 55
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Other ways to optimizations

using linear-equivalence permutations
using mixed basis

L L

Ц
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Other ways to optimizations

using linear-equivalence permutations
using mixed basis
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Computational work for one permutation

The permutation G defined earlier has combinational complexity equal to

2 · 30+ 2 · 12+ 2 · 16 = 116.

The depth for this permutation is 7+ 2+ 5 = 14.


