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Generalized Tweakable Feistel Network (GTFN)

q ∈ N, Q ∈ N
K ∈ Zk

q — key
T ∈ Zt

q — tweak
I ∈ N rounds
Encryption function of GTFN: EK,T : ZQ

q → ZQ
q

round function of GTFN is a key, tweak and round-dependent mapping:

F : Zk
q × Zt

q × ZI × ZR
q → ZL

q,

L,R ∈ N, L+ R = Q
Let for some h ∈ N, h < Q, L = ⌈Q/h⌉, then R = Q− ⌈Q/h⌉
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Round function of GTFN

An internal state of i round of GTFN: S(i) = S(i)0 󰀂S(i)1 , where S(i)0 ∈ ZL
q , S

(i)
1 ∈ ZR

q

S(0) is a plaintext, S(I) is a ciphertext.

The round function is evaluated as follows:

S(i) = S(i−1)
1

󰀐󰀐󰀐
󰀓
S(i−1)
0 + F

󰀃
K, T, i,R(i−1)󰀄

󰀔
,

where “+” is either
an operation of group ZqL , that we will denote as ⊞;
or operator of vector space ZL

q , that we will denote as ⊕.
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Examples of GTFN round functions

F

K,T,i

S (i −1)0 S (i −1)1

Figure: GTFN⊕, q = 2 and “+” operator in
round function is ⊕

F

K,T,i

S (i −1)0 S (i −1)1

Figure: GTFN⊞, q = L and “+” operator in
round function is ⊞
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Considered distributions

F for fixed K, T is realized a random function ZR
q → ZL

q according to the discrete
distribution D

Uniform discrete distribution U(ZL
q)

Distribution M(q, L) of the following random variable:

ζ = ξ (mod (qL)), where ξ ∼ U
󰀓
Z⌈L·log2(q)⌉

2

󰀔
,
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Differential trails

Let R = (h− 1) · L, internal state is a concatenation of h elements
of Zq

With probability 1, the following difference relationship for h
rounds holds:

(α󰀂 0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀
h−1

)
1−→ (0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀

h−1

󰀂α) 1−→

1−→ (0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀
h−2

󰀂α󰀂󰂏) 1−→ · · · 1−→ (α󰀂 󰂏󰀂 . . . 󰀂󰂏󰁿 󰁾󰁽 󰂀
h−1

),

There is an efficient algorithm to distinguish h rounds of the GTFN
algorithm from a random substitution
Difficulty and amount of material are about O

󰀃
qL
󰀄

S (0)0 S (0)1

F

K,T,1

S (1)0 S (1)1

F

K,T,2

S (2)0 S (2)1

F

K,T,3

S (3)0 S (3)1

F

K,T,4

S (4)0 S (4)1
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Differential trails

With probability q−(h−1)L, the following difference relationship for
h+ 1 rounds holds:

(α󰀂 0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀
h−1

)
1−→ (0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀

h−1

󰀂α) q−L

−−→

q−L

−−→ (0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀
h−2

󰀂α󰀂0) q−L

−−→ · · ·

· · · q−L

−−→ (α󰀂 0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀
h−1

)
1−→ (0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀

h−1

󰀂α),

the following difference relation holds for 4 rounds of the GTFN⊕
when h = 3:

(α󰀂0󰀂0) 1−→ (0󰀂0󰀂α) 2−bL−−→ (0󰀂α󰀂0) 2−bL−−→ (α󰀂0󰀂0) 1−→ (0󰀂0󰀂α)

S (0)0 S (0)1

F

K,T,1

S (1)0 S (1)1

F

K,T,2

S (2)0 S (2)1

F

K,T,3

S (3)0 S (3)1

F

K,T,4

S (4)0 S (4)1
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Distinguishing attack I

The idea of this attack is based on the statistical problem of distinguishing between two
hypotheses:

random sample observation from Bernoulli distribution with “success” probability
equals to q−(h−1)L;
random sample observation from Bernoulli distribution with “success” probability
equals to q−(h)L.

The difficulty of differental attack based on this test is about O
󰀃
qhL

󰀄
.
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Distinguishing attack II

Let there are Mj ≤ M/2 pairs of plain texts encrypted using tj, j = 1, . . . , T , tweaks that
have a difference (α󰀂0󰀂 . . . 󰀂0) for some fixed α.

Then the statistics equivalent to the likelihood ratio statistics:

Sj(Mj) =

Mj󰁛

i=1

zi,j,

where zi,j is–an indicator that equals 1 if and only if i-th pair of plaintexts that has an
input difference (α󰀂0󰀂 . . . 󰀂0) is have the same difference between ciphertexts.
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Distinguishing attack III

Simply increasing the material using different tweaks, values of α is generally speaking
not correct.

However, we can consider Sj(Mj) at one tweak with fixed α as a random variable that has
a binomial distribution with parameters Bin (Mj, qi).

In that case we can consider N such observations (N tweaks) and the statistic equivalent
to the likelihood ratio statistic equals to:

K(N,M) =
N󰁛

j=1

Sj(Mj).
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Distinguishing attack IV

Considering different values of α also leads to an increase in the efficiency of the attack.

Note that if the adversary has the ability to encrypt arbitrary texts, then he can choose
texts in such a way as to obtain up to M different values of α for which there will be
about M/2 pairs of plaintexts for the chosen values of α.

Indeed, if the cryptoanalyst can encrypt M = qe plaintexts (x1, x2, . . . , xh), where
x1 ≤ M, the difference relations described above are fulfilled for any value of
α ∈ Ze

q\{0}, α ≤ M.

This potentially could increase the amount of material (like in a multidimensional linear
cryptanalysis)
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Non-uniform case I

Let’s consider GTFN⊞ with round function that are chosen according M distribution.

Then the probability of the difference relation F(x) + F(x+ a) = b is equal to:

P {F(x) + F(x+ a) = b} =
4W0,0

(N ′)2
+

2W0,1

(N ′)2
+

W1,1

(N ′)2
= p1(b),

where
W0,0 = max{N ′ − N − b, 0,N ′ − 2N + b, 2N ′ − 3N}

W0,1 = min{2b, 2(N ′ − N), 2(N − b), 4N − 2N ′}

W1,1 = N −W0,0 −W0,1,

N = 2⌈L log2(q)⌉, N ′ = qL



13/32

Non-uniform case II

The graph of this probability for the case q = 10, h = 3, L = 3 is shown in figure:

Pr
p1(b) 10-6

200000 400000 600000 800000 1×106

1.×10 -6

1.01×10 -6

1.02×10 -6

1.03×10 -6

1.04×10 -6

b

Figure: Graph of probability p1(b) in case q = 10, h = 3, L = 3
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Non-uniform case III

This property helps to reduce the amount of material needed to apply the difference
attack compared to the equal-probability case (U(ZqL)).
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Non-uniform case IV

It also allows to apply a difference attack for more rounds. Without losing generality, let
us consider the special case of GTFN⊞ with q = 10, h = 3. Let’s find the probability of
the following 2h+ 1-rounds differential relation:

(α󰀂0󰀂0) −−−−−−→
2h+1 rounds

(0󰀂0󰀂󰂏),

where α ∈ Z10L — a fixed value, 󰂏 — any value of the set Z10L . The differential above
can be descripted as follows:

(α󰀂0󰀂0) → (0󰀂0󰀂α) → (0󰀂α󰀂γ) → (α󰀂γ󰀂δ) → (γ󰀂δ󰀂β) →
→ (δ󰀂β󰀂0) → (β󰀂0󰀂0) → (0󰀂0󰀂β),

where α ∈ Z10L — a fixed value, β, γ, δ — some values of the set Z10L .
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Non-uniform case V

This probability is different from the case of an equal probability distribution:

Distribution
L M U
3 10−6 + 1.61 · 10−11 10−6

4 10−8 + 4.01 · 10−11 10−8

5 10−10 + 7.24 · 10−13 10−10

6 10−12 + 1.17 · 10−16 10−12
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L ∕= Q/h case

Let α ∈ ZL
q , α = (α1,α2, . . . ,αL), w = L− (Q− (h− 1)L) = hL− Q,

α1 = . . . = αw = 0.

Then the following difference relationship for h rounds holds:

(α󰀂 0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀
h−1

)
1−−−−→

h rounds
(α′󰀂󰂏) ,

where α′ = (αw+1,αw+2, . . . ,αL), 󰂏 — some element of ZQ−L+w
q .

As we can see in case L = Q/h the value w = 0 and all statements shown earlier are
correct.
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Characters of Abelian groups I

The scalar product of two functions f1, f2 with values in C× is defined as follows:

〈f1, f2〉 =
󰁛

x∈X

f1(x)f2(x).

The Fourier coefficients of function f ∈ CX is a function Cf
α ∈ C󰁥X:

Cf
α = 〈f ,χα〉 =

󰁛

x∈X

f (x)χα(x), α ∈ X.

These coefficients are defined the Fourier transform of f :

f =
1
|X|

󰁛

α∈X

Cf
αχα.
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Characters of Abelian groups II

Let D is a distribution of values of finite Abelian group X:

PrD {x} = p(x).

The function p(x) can be represented using the Fourier transform as function of CX:

p(x) =
1
|X|

󰁛

α∈X

CP
αχα(x).

Then Cp
α is the expected number of χα:

Cp
α =

󰁛

x∈X

p(x)χα(x) = Eχα.



20/32

Characters of Abelian groups III

Statement
Let f ∈ YX be a function with arguments in finite Abelian group X and with values in
finite Abelian group Y. Then

Eψβ(f (x)) =
1
|X|

󰁛

α∈X

Cf
β,α · Eχα.

Statement
Under the conditions of the previous statement:

Pr {f (x) = b} =
1
|Y|

󰁛

β∈Y

Eψβ(f )ψβ(b) =
1
|Y|

󰁛

β∈Y

Eψβ(f )ψβ(b).
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Characters of Abelian groups IV

Let’s consider the function F(x) of the form F(x) = (f (x),−x). In that case
F(x) ∈ (Y ∔ X)X. If X and Y are finite Abelian groups then Z = Y ∔ X also a finite
Abelian group and

Z = Y ∔ X = H1 ∔ . . .∔ Ht ∔ G1 ∔ . . .∔ Gk.

Let φγ , γ ∈ Z, γ = β󰀂α — are characters of group Z. Then for function F:

Pr {F(x) = b} =
1
|Z|

󰁛

γ∈Z

Eφγ(F)φγ(b) =
󰁛

γ∈Z

E
󰀓
ψβ(f (x))χα(x)

󰀔
ψβ(f (x))χα(x).
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Characters of Abelian groups V

We can see that E
󰀓
ψβ(f (x))χα(x)

󰀔
is a Fourier coefficient of function F when D = U.

In this work we call correlation coefficient of the linear approximation (χα,φβ) of
function f the value

LF
β,α = E

󰀓
ψβ(f (x))χα(x)

󰀔
.

If Y and X are the same groups the equation above can be rewritten as follows:

LF
β,α = E

󰀓
χβ(f (x))χα(x)

󰀔
.
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Linear trails I

R = (h− 1) · L
Consider the following linear relation on three rounds of the GTFN
algorithm:

(α󰀂 0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀
h−1

)
c1−→ (0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀

h−1

󰀂α) 1−→

1−→ (0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀
h−2

󰀂α󰀂0) 1−→ · · · 1−→ (α󰀂 0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀
h−1

),

S (i-1)0 S (i-1)1

F

K,T,i

S (i)0 S (i)1

F

K,T,i+1

S (i+1)0 S (i+1)1

F

K,T,i+2

S (i+2)0 S (i+2)1



24/32

Linear trails II

Let’s describe this relationship in more detail. The correlation coefficient c1 in the first
round

(α󰀂 0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀
h−1

)
c1−→ (0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀

h−1

󰀂α)

equals to:

E
󰀕
χα

󰀓
K, T, 1, S(0)1

󰀔
χ0

󰀓
S(0)1

󰀔󰀖
= E

󰀓
χα

󰀓
K, T, 1, S(0)1

󰀔󰀔
,

where F
󰀓
K, T, 1, S(0)1

󰀔
— is F-function of the first round. In case of GTFN⊕ algorithm

this coefficient equals to:

2 · P
󰁱󰁇

0, S(0)1

󰁈
=

󰁇
β,F

󰀓
b, 1, T, S(0)1

󰀔󰁈󰁲
− 1 = c1.
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Linear trails III

Similarly we can consider the others correlation coefficients for the following relations:

(0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀
h−1

󰀂α) 1−→ (0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀
h−2

󰀂α󰀂0), . . . , (0󰀂α󰀂 0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀
h−2

)
1−→ (α󰀂 0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀

h−1

).

It’s easy to show, that

E
󰀕
χ0

󰀓
F
󰀓
K, T, i+ 1, S(i)1

󰀔󰀔
χ0

󰀓
S(i)1

󰀔󰀖
= 1.

In case of GTFN⊕ algorithm this coefficient equals to:

2 · P
󰁱󰁇

0, S(i)1
󰁈
=

󰁇
0,F

󰀓
K, T, i+ 1, S(i)1

󰀔󰁈󰁲
− 1 = 1.
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Linear trails IV

As in1 , we can use the following approach. Let the set of plaintexts have the following
form: P = {(x1, x2, . . . , xh)}, where x2, x3, . . . , xh are fixed by some constants from the
set ZL

q . Then for the first three rounds of the algorithm GTFN the absolute value of
correlation coefficient is equal to 1. Indeed, on the first round, the values
F
󰀓
K, T, 1, S(0)1

󰀔
will be the same and equal to some y ∈ ZL

q , from which it follows that

󰀏󰀏󰀏󰀏E
󰀕
χα

󰀓
F
󰀓
K, T, 1, S(0)1

󰀔󰀔
χ0

󰀓
S(0)1

󰀔󰀖󰀏󰀏󰀏󰀏 = |E (χα (y))| = |(χα (y))| = 1.

In case of GTFN⊕ algorithm this coefficient equals to:

2 · P
󰁱󰁇

0, S(0)1

󰁈
= 〈α, y〉

󰁲
− 1 = ±1.

1Tim Beyne., “Linear Cryptanalysis of FF3-1 and FEA. Cryptology ePrint Archive, Report 2021/815,
2021. https://ia.cr/2021/815.”.
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Distribution of correlation coefficient c1

For a random vectorial Boolean function S : Zn
2 → Zm

2 as n increases, the value LS
β,α

will have a normal distribution with parameters N (0, 2−n).
If X and Y are finite Abelian groups and S is a random function S ∈ YX the the
distribution of

󰁳
|X|LS

β,α converges to the standard complex normal distribution
CN (0, 1).
If D ∕= U then the distribution of the value

LS
α,0 = E

󰀓
χα

󰀓
K, T, 1, S(0)1

󰀔󰀔

should be estimated.
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Statistical issues I

Consider the following linear relation on h · r + h rounds of the GTFN algorithm, similar
to those considered in2:

(α󰀂 0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀
h−1

)
1−→ (0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀

h−1

󰀂α) 1−→ (0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀
h−2

󰀂α󰀂0) 1−→ · · ·

· · · 1−→ (α󰀂 0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀
h−1

)
ch+1−−→ (0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀

h−1

󰀂α) 1−→ . . .
1−→ (α󰀂 0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀

h−1

)
c2h+1−−→

c2h+1−−→ . . .
cr−h+1−−−→ (0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀

h−1

󰀂α) 1−→ . . .
1−→ (α󰀂 0󰀂 . . . 󰀂0󰁿 󰁾󰁽 󰂀

h−1

).



29/32

Statistical issues II

Using the pilling-up lemma the correlation coefficient C1 = LGTFN
(α󰀂0󰀂...󰀂0),(α󰀂0󰀂...󰀂0) can be

estimated as follows:

C1 =
r/h−h󰁜

i=1

c1+h·i,

where c1+h·i = LF
α,0.
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Statistical issues III

A random permutation will have a correlation coefficient equals to the value C0, which
is a realization of a random variable with the uniform distribution.
The distribution of C0 is well known and we also suppose that the distribution of C1
is also known to a cryptanalyst.
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Statistical issues IV

The statistics based on logarithm of likelihood function is asymptotically equivalent to:

󰁛

α′,β′∈X\0

LS
β′,α′

M󰁛

i=1

χβ′(yi)χα′(xi).

With M → ∞ the sum
󰁓M

i=1 χβ′(yi)χα′(xi) converges to LS
β′,α′ , then

󰁛

α′,β′∈X\0

LS
β′,α′

M󰁛

i=1

χβ′(yi)χα′(xi) → M
󰁛

α′,β′∈X\0

󰀏󰀏LS
β′,α′

󰀏󰀏2 .
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Statistical issues V

As we consider plaintexts of the form (x󰀂a1󰀂a2󰀂 . . . 󰀂ah−1), where a0, a1, . . . , ah−1 —
some fixed elements of ZL

q and α′ = β′ of the form (α󰀂0󰀂 . . . 󰀂0) then the equation above
is equal to:

M
󰁛

α∈ZL
q\0

󰀏󰀏󰀏LS
(α󰀂0󰀂...󰀂0),(α󰀂0󰀂...󰀂0)

󰀏󰀏󰀏
2
.

Let DC0 is the variance of correlation coefficient of a random function and DC1 is the
variance of a correlation coefficient

DC1 = LGTFN
(α󰀂0󰀂...󰀂0),(α󰀂0󰀂...󰀂0) ≈

󰀃
DLF

α,0
󰀄r/h−h

.

Then for a successful attack the ratio between M, N (tweak and other plaitexts quantity)
and |X| = qL should be:

M · N · |X| ≈ O
󰀓
(DC1 − DC0)−1

󰀔
.

2Tim Beyne., “Linear Cryptanalysis of FF3-1 and FEA. Cryptology ePrint Archive, Report 2021/815,
2021. https://ia.cr/2021/815.”.


