Distinguishing attacks on Feistel ciphers based on linear and differential attacks

Denis Fomin

HSE University

Generalized Tweakable Feistel Network (GTFN)

- $q \in \mathbb{N}, Q \in \mathbb{N}$
- $K \in \mathbb{Z}_q^k$ key
- $T \in \mathbb{Z}_q^t$ tweak
- $I \in \mathbb{N}$ rounds
- Encryption function of GTFN: $E_{K,T}$: $\mathbb{Z}_q^Q \to \mathbb{Z}_q^Q$
- round function of GTFN is a key, tweak and round-dependent mapping:

$$F \colon \mathbb{Z}_q^k \times \mathbb{Z}_q^t \times \mathbb{Z}_I \times \mathbb{Z}_q^R \to \mathbb{Z}_q^L$$

$$L, R \in \mathbb{N}, L + R = Q$$

■ Let for some $h \in \mathbb{N}$, h < Q, $L = \lceil Q/h \rceil$, then $R = Q - \lceil Q/h \rceil$

An internal state of i round of GTFN: $S^{(i)} = S_0^{(i)} || S_1^{(i)}$, where $S_0^{(i)} \in \mathbb{Z}_q^L$, $S_1^{(i)} \in \mathbb{Z}_q^R$ $S^{(0)}$ is a plaintext, $S^{(I)}$ is a ciphertext.

The round function is evaluated as follows:

$$S^{(i)} = S_1^{(i-1)} \left\| \left(S_0^{(i-1)} + F\left(K, T, i, R^{(i-1)}\right) \right) \right.$$

where "+" is either

- an operation of group \mathbb{Z}_{q^L} , that we will denote as \boxplus ;
- or operator of vector space \mathbb{Z}_q^L , that we will denote as \oplus .

Figure: $GTFN_{\oplus}$, q=2 and "+" operator in round function is \oplus

Figure: GTFN $_{\boxplus}$, q=L and "+" operator in round function is \boxplus

F for fixed K, T is realized a random function $\mathbb{Z}_q^R \to \mathbb{Z}_q^L$ according to the discrete distribution D

- Uniform discrete distribution $U(\mathbb{Z}_q^L)$
- Distribution M(q, L) of the following random variable:

$$\zeta = \xi \pmod{(q^L)}, \text{ where } \xi \sim \mathsf{U}\left(\mathbb{Z}_2^{\lceil L \cdot \log_2(q) \rceil}\right),$$

Differential trails

- Let $R = (h-1) \cdot L$, internal state is a concatenation of h elements of \mathbb{Z}_q
- With probability 1, the following difference relationship for *h* rounds holds:

$$(\alpha \| \underbrace{0 \| \dots \| 0}_{h-1}) \xrightarrow{1} (\underbrace{0 \| \dots \| 0}_{h-1} \| \alpha) \xrightarrow{1}$$

$$\xrightarrow{1} (\underbrace{0 \| \dots \| 0}_{h-2} \| \alpha \| \star) \xrightarrow{1} \dots \xrightarrow{1} (\alpha \| \underbrace{\star \| \dots \| \star}_{h-1}),$$

- There is an efficient algorithm to distinguish *h* rounds of the GTFN algorithm from a random substitution
- Difficulty and amount of material are about $O\left(q^{L}\right)$

With probability $q^{-(h-1)L}$, the following difference relationship for h+1 rounds holds:

$$(\alpha \| \underbrace{0 \| \dots \| 0}_{h-1}) \xrightarrow{1} (\underbrace{0 \| \dots \| 0}_{h-1} \| \alpha) \xrightarrow{q^{-L}}$$

$$\xrightarrow{q^{-L}} (\underbrace{0 \| \dots \| 0}_{h-2} \| \alpha \| 0) \xrightarrow{q^{-L}} \dots$$

$$\cdots \xrightarrow{q^{-L}} (\alpha \| \underbrace{0 \| \dots \| 0}_{h-1}) \xrightarrow{1} (\underbrace{0 \| \dots \| 0}_{h-1} \| \alpha),$$

■ the following difference relation holds for 4 rounds of the GTFN_⊕ when h = 3:

$$(\alpha \|0\|0) \xrightarrow{1} (0\|0\|\alpha) \xrightarrow{2^{-b_L}} (0\|\alpha\|0) \xrightarrow{2^{-b_L}} (\alpha \|0\|0) \xrightarrow{1} (0\|0\|\alpha)$$

Distinguishing attack I

The idea of this attack is based on the statistical problem of distinguishing between two hypotheses:

- random sample observation from Bernoulli distribution with "success" probability equals to $q^{-(h-1)L}$;
- random sample observation from Bernoulli distribution with "success" probability equals to $q^{-(h)L}$.

The difficulty of differental attack based on this test is about $O(q^{hL})$.

Let there are $M_j \le M/2$ pairs of plain texts encrypted using $t_j, j = 1, ..., T$, tweaks that have a difference $(\alpha || 0 || ... || 0)$ for some fixed α .

Then the statistics equivalent to the likelihood ratio statistics:

$$S_j(M_j) = \sum_{i=1}^{M_j} z_{i,j},$$

where $z_{i,j}$ is—an indicator that equals 1 if and only if *i*-th pair of plaintexts that has an input difference $(\alpha \|0\| \dots \|0)$ is have the same difference between ciphertexts.

Simply increasing the material using different tweaks, values of α is generally speaking not correct.

However, we can consider $S_j(M_j)$ at one tweak with fixed α as a random variable that has a binomial distribution with parameters Bin (M_j, q_i) .

In that case we can consider N such observations (N tweaks) and the statistic equivalent to the likelihood ratio statistic equals to:

$$K(N,M) = \sum_{j=1}^{N} S_j(M_j).$$

Considering different values of α also leads to an increase in the efficiency of the attack.

Note that if the adversary has the ability to encrypt arbitrary texts, then he can choose texts in such a way as to obtain up to M different values of α for which there will be about M/2 pairs of plaintexts for the chosen values of α .

Indeed, if the cryptoanalyst can encrypt $M = q^e$ plaintexts $(x_1, x_2, ..., x_h)$, where $x_1 \leq M$, the difference relations described above are fulfilled for any value of $\alpha \in \mathbb{Z}_q^e \setminus \{0\}$, $\alpha \leq M$.

This potentially could increase the amount of material (like in a multidimensional linear cryptanalysis)

Let's consider GTFN_⊞ with round function that are chosen according M distribution.

Then the probability of the difference relation F(x) + F(x + a) = b is equal to:

$$P\{F(x) + F(x+a) = b\} = \frac{4W_{0,0}}{(N')^2} + \frac{2W_{0,1}}{(N')^2} + \frac{W_{1,1}}{(N')^2} = p_1(b),$$

where

$$W_{0,0} = \max\{N' - N - b, 0, N' - 2N + b, 2N' - 3N\}$$

$$W_{0,1} = \min\{2b, 2(N' - N), 2(N - b), 4N - 2N'\}$$

$$W_{1,1} = N - W_{0,0} - W_{0,1},$$

$$N = 2^{\lceil L \log_2(q) \rceil}, N' = q^L$$

The graph of this probability for the case q = 10, h = 3, L = 3 is shown in figure:

Figure: Graph of probability $p_1(b)$ in case q = 10, h = 3, L = 3

This property helps to reduce the amount of material needed to apply the difference attack compared to the equal-probability case $(U(\mathbb{Z}_{q^L}))$.

It also allows to apply a difference attack for more rounds. Without losing generality, let us consider the special case of GTFN $_{\boxplus}$ with q=10, h=3. Let's find the probability of the following 2h+1-rounds differential relation:

$$(\alpha || 0 || 0) \xrightarrow{2h+1 \text{ rounds}} (0 || 0 || \star),$$

where $\alpha \in \mathbb{Z}_{10^L}$ — a fixed value, \star — any value of the set \mathbb{Z}_{10^L} . The differential above can be descripted as follows:

$$(\alpha \|0\|0) \to (0\|0\|\alpha) \to (0\|\alpha\|\gamma) \to (\alpha\|\gamma\|\delta) \to (\gamma\|\delta\|\beta) \to \\ \to (\delta\|\beta\|0) \to (\beta\|0\|0) \to (0\|0\|\beta),$$

where $\alpha \in \mathbb{Z}_{10^L}$ — a fixed value, β, γ, δ — some values of the set \mathbb{Z}_{10^L} .

Non-uniform case V

This probability is different from the case of an equal probability distribution:

	Distribution	
L	М	U
3	$10^{-6} + 1.61 \cdot 10^{-11}$	10^{-6}
4	$10^{-8} + 4.01 \cdot 10^{-11}$	10^{-8}
5	$10^{-10} + 7.24 \cdot 10^{-13}$	10^{-10}
6	$10^{-12} + 1.17 \cdot 10^{-16}$	10^{-12}

$L \neq Q/h$ case

Let
$$\alpha \in \mathbb{Z}_q^L$$
, $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_L)$, $w = L - (Q - (h-1)L) = hL - Q$, $\alpha_1 = \dots = \alpha_w = 0$.

Then the following difference relationship for *h* rounds holds:

$$(\alpha \parallel \underbrace{0 \parallel \dots \parallel 0}_{h-1}) \xrightarrow[h \text{ rounds}]{1} (\alpha' \parallel \star),$$

where
$$\alpha' = (\alpha_{w+1}, \alpha_{w+2}, \dots, \alpha_L), \star$$
 — some element of \mathbb{Z}_q^{Q-L+w} .

As we can see in case L = Q/h the value w = 0 and all statements shown earlier are correct.

The scalar product of two functions f_1, f_2 with values in \mathbb{C}^{\times} is defined as follows:

$$\langle f_1, f_2 \rangle = \sum_{x \in X} f_1(x) \overline{f_2(x)}.$$

The Fourier coefficients of function $f \in \mathbb{C}^X$ is a function $C^f_{\alpha} \in \mathbb{C}^{\widehat{X}}$:

$$C_{\alpha}^{f} = \langle f, \overline{\chi_{\alpha}} \rangle = \sum_{x \in X} f(x) \overline{\chi_{\alpha}(x)}, \ \alpha \in X.$$

These coefficients are defined the Fourier transform of f:

$$f = \frac{1}{|X|} \sum_{\alpha \in X} C_{\alpha}^f \chi_{\alpha}.$$

Let D is a distribution of values of finite Abelian group *X*:

$$\Pr_{\mathsf{D}}\left\{x\right\} = p(x).$$

The function p(x) can be represented using the Fourier transform as function of \mathbb{C}^X :

$$p(x) = \frac{1}{|X|} \sum_{\alpha \in X} C_{\alpha}^{P} \chi_{\alpha}(x).$$

Then C^p_{α} is the expected number of $\overline{\chi_{\alpha}}$:

$$C^p_{\alpha} = \sum_{x \in X} p(x) \overline{\chi_{\alpha}(x)} = \mathbf{E} \overline{\chi_{\alpha}}.$$

Statement

Let $f \in Y^X$ be a function with arguments in finite Abelian group X and with values in finite Abelian group Y. Then

$$\mathbf{E}\psi_{\beta}(f(x)) = \frac{1}{|X|} \sum_{\alpha \in X} C_{\beta,\alpha}^{f} \cdot \mathbf{E}\chi_{\alpha}.$$

Statement

Under the conditions of the previous statement:

$$\Pr\{f(x) = b\} = \frac{1}{|Y|} \sum_{\beta \in Y} \mathbf{E} \psi_{\beta}(f) \overline{\psi_{\beta}(b)} = \frac{1}{|Y|} \sum_{\beta \in Y} \mathbf{E} \overline{\psi_{\beta}(f)} \psi_{\beta}(b).$$

Let's consider the function F(x) of the form F(x) = (f(x), -x). In that case $F(x) \in (Y \dotplus X)^X$. If X and Y are finite Abelian groups then $Z = Y \dotplus X$ also a finite Abelian group and

$$Z = Y \dotplus X = H_1 \dotplus \ldots \dotplus H_t \dotplus G_1 \dotplus \ldots \dotplus G_k.$$

Let ϕ_{γ} , $\gamma \in \mathbb{Z}$, $\gamma = \beta \| \alpha$ — are characters of group \mathbb{Z} . Then for function F:

$$\Pr\left\{F(x) = b\right\} = \frac{1}{|Z|} \sum_{\gamma \in Z} \mathbf{E} \phi_{\gamma}(F) \overline{\phi_{\gamma}(b)} = \sum_{\gamma \in Z} \mathbf{E} \left(\psi_{\beta}(f(x)) \overline{\chi_{\alpha}(x)}\right) \overline{\psi_{\beta}(f(x))} \chi_{\alpha}(x).$$

We can see that $\mathbf{E}\left(\psi_{\beta}(f(x))\overline{\chi_{\alpha}(x)}\right)$ is a Fourier coefficient of function F when D=U. In this work we call correlation coefficient of the linear approximation $(\chi_{\alpha},\phi_{\beta})$ of function f the value

$$\mathbf{L}_{\beta,\alpha}^F = \mathbf{E}\left(\psi_{\beta}(f(x))\overline{\chi_{\alpha}(x)}\right).$$

If *Y* and *X* are the same groups the equation above can be rewritten as follows:

$$\mathbf{L}_{\beta,\alpha}^F = \mathbf{E}\left(\chi_{\beta}(f(x))\overline{\chi_{\alpha}(x)}\right).$$

$$R = (h-1) \cdot L$$

■ Consider the following linear relation on three rounds of the GTFN algorithm:

$$(\alpha \| \underbrace{0 \| \dots \| 0}_{h-1}) \xrightarrow{c_1} \underbrace{(0 \| \dots \| 0}_{h-1} \| \alpha) \xrightarrow{1}$$

$$\xrightarrow{1} \underbrace{(0 \| \dots \| 0}_{h-2} \| \alpha \| 0) \xrightarrow{1} \dots \xrightarrow{1} (\alpha \| \underbrace{0 \| \dots \| 0}_{h-1}),$$

Let's describe this relationship in more detail. The correlation coefficient c_1 in the first round

$$(\alpha \| \underbrace{0 \| \dots \| 0}_{h-1}) \xrightarrow{c_1} (\underbrace{0 \| \dots \| 0}_{h-1} \| \alpha)$$

equals to:

$$\mathbf{E}\left(\chi_{\alpha}\left(K,T,1,S_{1}^{(0)}\right)\overline{\chi_{0}\left(S_{1}^{(0)}\right)}\right) = \mathbf{E}\left(\chi_{\alpha}\left(K,T,1,S_{1}^{(0)}\right)\right),$$

where $F\left(K,T,1,S_1^{(0)}\right)$ — is F-function of the first round. In case of GTFN $_{\oplus}$ algorithm this coefficient equals to:

$$2 \cdot \mathsf{P}\left\{\left\langle 0, S_1^{(0)} \right\rangle = \left\langle \beta, F\left(b, 1, T, S_1^{(0)}\right) \right\rangle \right\} - 1 = c_1.$$

Similarly we can consider the others correlation coefficients for the following relations:

$$(\underbrace{0 \| \dots \| 0}_{h-1} \| \alpha) \xrightarrow{1} (\underbrace{0 \| \dots \| 0}_{h-2} \| \alpha \| 0), \dots, (0 \| \alpha \| \underbrace{0 \| \dots \| 0}_{h-2}) \xrightarrow{1} (\alpha \| \underbrace{0 \| \dots \| 0}_{h-1}).$$

It's easy to show, that

$$\mathbf{E}\left(\chi_0\left(F\left(K,T,i+1,S_1^{(i)}\right)\right)\overline{\chi_0\left(S_1^{(i)}\right)}\right)=1.$$

In case of GTFN_⊕ algorithm this coefficient equals to:

$$2 \cdot \mathsf{P}\left\{\left\langle 0, S_1^{(i)} \right\rangle = \left\langle 0, F\left(K, T, i+1, S_1^{(i)}\right) \right\rangle\right\} - 1 = 1.$$

Linear trails IV

As in¹, we can use the following approach. Let the set of plaintexts have the following form: $P = \{(x_1, x_2, \dots, x_h)\}$, where x_2, x_3, \dots, x_h are fixed by some constants from the set \mathbb{Z}_q^L . Then for the first three rounds of the algorithm GTFN the absolute value of correlation coefficient is equal to 1. Indeed, on the first round, the values $F\left(K, T, 1, S_1^{(0)}\right)$ will be the same and equal to some $y \in \mathbb{Z}_q^L$, from which it follows that

$$\left| \mathbf{E} \left(\chi_{\alpha} \left(F \left(K, T, 1, S_{1}^{(0)} \right) \right) \overline{\chi_{0} \left(S_{1}^{(0)} \right)} \right) \right| = \left| \mathbf{E} \left(\chi_{\alpha} \left(y \right) \right) \right| = \left| \left(\chi_{\alpha} \left(y \right) \right) \right| = 1.$$

In case of $GTFN_{\oplus}$ algorithm this coefficient equals to:

$$2 \cdot \mathsf{P}\left\{\left\langle 0, S_1^{(0)} \right\rangle = \left\langle \alpha, y \right\rangle\right\} - 1 = \pm 1.$$

5/32

¹Tim Beyne., "Linear Cryptanalysis of FF3-1 and FEA. Cryptology ePrint Archive, Report 2021/815, 2021. https://ia.cr/2021/815.".

- For a random vectorial Boolean function $S: \mathbb{Z}_2^n \to \mathbb{Z}_2^m$ as n increases, the value $\mathbf{L}_{\beta,\alpha}^S$ will have a normal distribution with parameters $\mathcal{N}(0,2^{-n})$.
- If X and Y are finite Abelian groups and S is a random function $S \in Y^X$ the the distribution of $\sqrt{|X|} \mathbf{L}_{\beta,\alpha}^S$ converges to the standard complex normal distribution $\mathcal{CN}(0,1)$.
- If $D \neq U$ then the distribution of the value

$$\mathbf{L}_{\alpha,0}^{S} = \mathbf{E}\left(\chi_{\alpha}\left(K, T, 1, S_{1}^{(0)}\right)\right)$$

should be estimated.

Consider the following linear relation on $h \cdot r + h$ rounds of the GTFN algorithm, similar to those considered in²:

$$(\alpha \| \underbrace{0 \| \dots \| 0}_{h-1}) \xrightarrow{1} \underbrace{(0 \| \dots \| 0}_{h-1} \| \alpha) \xrightarrow{1} \underbrace{(0 \| \dots \| 0}_{h-2} \| \alpha \| 0) \xrightarrow{1} \dots \xrightarrow{1} (\alpha \| \underbrace{0 \| \dots \| 0}_{h-1}) \xrightarrow{c_{h+1}} \underbrace{(0 \| \dots \| 0}_{h-1} \| \alpha) \xrightarrow{1} \dots \xrightarrow{1} (\alpha \| \underbrace{0 \| \dots \| 0}_{h-1}) \xrightarrow{c_{2h+1}} \dots \xrightarrow{c_{r-h+1}} \underbrace{(0 \| \dots \| 0}_{h-1} \| \alpha) \xrightarrow{1} \dots \xrightarrow{1} (\alpha \| \underbrace{0 \| \dots \| 0}_{h-1}).$$

Using the pilling-up lemma the correlation coefficient $\mathcal{C}_1 = \mathbf{L}_{(\alpha\|0\|\dots\|0),(\alpha\|0\|\dots\|0)}^{GTFN}$ can be estimated as follows:

$$\mathcal{C}_1 = \prod_{i=1}^{r/h-h} c_{1+h\cdot i},$$

where
$$c_{1+h\cdot i} = \mathbf{L}_{\alpha,0}^F$$
.

Statistical issues III

- A random permutation will have a correlation coefficient equals to the value C_0 , which is a realization of a random variable with the uniform distribution.
- The distribution of C_0 is well known and we also suppose that the distribution of C_1 is also known to a cryptanalyst.

The statistics based on logarithm of likelihood function is asymptotically equivalent to:

$$\sum_{\alpha',\beta'\in X\setminus 0} \mathbf{L}_{\beta',\alpha'}^{S} \sum_{i=1}^{M} \overline{\chi_{\beta'}(y_i)} \chi_{\alpha'}(x_i).$$

With $M \to \infty$ the sum $\sum_{i=1}^{M} \overline{\chi_{\beta'}(y_i)} \chi_{\alpha'}(x_i)$ converges to $\overline{\mathbf{L}_{\beta',\alpha'}^{S}}$, then

$$\sum_{\alpha',\beta'\in X\setminus 0} \mathbf{L}_{\beta',\alpha'}^{S} \sum_{i=1}^{M} \overline{\chi_{\beta'}(y_i)} \chi_{\alpha'}(x_i) \to M \sum_{\alpha',\beta'\in X\setminus 0} \left| \mathbf{L}_{\beta',\alpha'}^{S} \right|^{2}.$$

Statistical issues V

As we consider plaintexts of the form $(x||a_1||a_2||...||a_{h-1})$, where $a_0, a_1, ..., a_{h-1}$ —some fixed elements of \mathbb{Z}_q^L and $\alpha' = \beta'$ of the form $(\alpha||0||...||0)$ then the equation above is equal to:

$$M\sum_{\alpha\in\mathbb{Z}^{\underline{L}}\setminus 0}\left|\mathbf{L}_{(\alpha\|0\|...\|0),(\alpha\|0\|...\|0)}^{s}\right|^{2}.$$

Let $\mathbf{D}\mathcal{C}_0$ is the variance of correlation coefficient of a random function and $\mathbf{D}\mathcal{C}_1$ is the variance of a correlation coefficient

$$\mathbf{D}\mathcal{C}_1 = \mathbf{L}_{(\alpha\|0\|...\|0),(\alpha\|0\|...\|0)}^{\mathrm{GTFN}} pprox \left(\mathbf{D}\mathbf{L}_{\alpha,0}^F\right)^{r/h-h}.$$

Then for a successful attack the ratio between M, N (tweak and other plaitexts quantity) and $|X| = q^L$ should be:

$$M \cdot N \cdot |X| \approx O\left(\left(\mathbf{D}C_1 - \mathbf{D}C_0\right)^{-1}\right).$$

²Tim Beyne., "Linear Cryptanalysis of FF3-1 and FEA. Cryptology ePrint Archive, Report 2021/815, 2021. https://ia.cr/2021/815.".