• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Tag «physical chemistry»

Page 1 of 1
2024, November
1Fr2Sa3Su4Mo5Tu6We7Th8Fr9Sa10Su11Mo12Tu13We14Th15Fr16Sa17Su18Mo19Tu20We21Th22Fr23Sa24Su25Mo26Tu27We28Th29Fr30Sa
2025, January
1We2Th3Fr4Sa5Su6Mo7Tu8We9Th10Fr11Sa12Su13Mo14Tu15We16Th17Fr18Sa19Su20Mo21Tu22We23Th24Fr25Sa26Su27Mo28Tu29We30Th31Fr
2025, May
1Th2Fr3Sa4Su5Mo6Tu7We8Th9Fr10Sa11Su12Mo13Tu14We15Th16Fr17Sa18Su19Mo20Tu21We22Th23Fr24Sa25Su26Mo27Tu28We29Th30Fr31Sa
2025, June
1Su2Mo3Tu4We5Th6Fr7Sa8Su9Mo10Tu11We12Th13Fr14Sa15Su16Mo17Tu18We19Th20Fr21Sa22Su23Mo24Tu25We26Th27Fr28Sa29Su30Mo
2025, August
1Fr2Sa3Su4Mo5Tu6We7Th8Fr9Sa10Su11Mo12Tu13We14Th15Fr16Sa17Su18Mo19Tu20We21Th22Fr23Sa24Su25Mo26Tu27We28Th29Fr30Sa31Su
2025, October
1We2Th3Fr4Sa
6
  • Today
  • Tomorrow

Wednesday, October 1

16:20
Seminar on Mathematical Physics. Speaker: Dmitry Khromov
online
17:00

Vladimir Mangazeev to speak on 'On Braided Hopf Structures on Exterior Algebras'

Thursday, October 2

18:00

Konstantin Khanin to speak on 'Another Look at the KPZ Problem'

Illustration for news: Chemists Suggest Using Polymeric Ionic Liquids in Supercapacitors

Chemists Suggest Using Polymeric Ionic Liquids in Supercapacitors

A team of researchers from HSE MIEM joined colleagues from the Institute of Non-Classical Chemistry in Leipzig to develop a theoretical model of a polymeric ionic liquid on a charged conductive electrode. They used approaches from polymer physics and theoretical electrochemistry to demonstrate the difference in the behaviour of electrical differential capacitance of polymeric and ordinary ionic liquids for the first time. The results of the study were published in Physical Chemistry Chemical Physics.

Illustration for news: Researchers Propose Method to Increase Charge of Supercapacitors

Researchers Propose Method to Increase Charge of Supercapacitors

Researchers from HSE MIEM and the Institute of Non-Classical Chemistry in Leipzig have proposed a new theoretical model of supercapacitors that takes into account the properties of a cation, which considerably impacts the electric differential capacitance of supercapacitors. This is the first publication of its kind in electrochemistry. The authors believe that the model will allow engineers to create more powerful energy sources in the future. The results of the study were published in The Journal of Physical Chemistry C. The study was completed with support from a grant by RSF.