• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Z-Flipons: How Specific DNA Regions Help Regulate Gene Function

Z-Flipons: How Specific DNA Regions Help Regulate Gene Function

© iStock

Researchers at HSE University and InsideOutBio have applied machine learning to identify the location and functions of mirror-twisted DNA structures, known as Z-flipons, in human and mouse genomes. The scientists discovered which Z-DNA regions were conserved in both species throughout evolution and demonstrated for the first time that Z-DNA accelerates the process of creating RNA copies of genes. The findings will contribute to the development of new treatments for genetic diseases. The study has been published in Scientific Reports.

The structure of a DNA molecule—a double helix resembling a spiral staircase—might be familiar to many from their high school days. The 'steps' of this staircase are made up of pairs of nitrogenous bases, while the 'railings' consist of alternating chains of sugar and phosphate groups. Typically, the DNA strand twists to the right, but certain regions can temporarily twist to the left, playing a role in regulating gene activity. Due to their resemblance to the letter Z, these regions are referred to as Z-flipons. 

A team of researchers from the International Laboratory of Bioinformatics at the AI and Digital Science Institute of the HSE Faculty of Computer Science and InsideOutBio analysed the human and mouse genomes to predict the locations of Z-flipons and determine their functions. To achieve this, the scientists examined whether the Z-DNA segment is conserved across different species throughout evolution; if the segment remains unchanged, it indicates its importance to the organism's function and survival.

The researchers used the previously developed DeepZ deep learning system that considered not only information from the linear DNA sequence but also data from tens of thousands of Omix experiments. This included, for example, information about epigenetic tags—chemical markers on DNA or proteins that help regulate gene activity without altering the DNA structure itself. Additionally, the scientists incorporated data on the transition energy required for a DNA region to alter its structure. Two machine learning models were developed using this data: one for humans and one for mice. Afterward, the trained model 'scanned' the entire genome, identifying areas with a high probability of Z-DNA regions. The model predictions were compared, and then the regions conserved in both the human and mouse genomes were identified. 

The researchers were able to structure data on the locations of Z-flipons in the mouse and human genomes and identify the genes in which they are found. The scientists have demonstrated that Z-flipons are conserved elements which are shared by different organisms and persist throughout evolution. By applying clustering, the researchers discovered that Z-flipons are grouped by function: some are involved in transcription regulation, while others play a role in the formation of chromatin—the 'packaging' of DNA within the cell. This confirms that Omix features do indeed determine the functional class of Z-flipons, which is crucial for understanding their role.

Also, for the first time, the scientists discovered and statistically demonstrated that Z-flipons accelerate the initiation of transcription, the process of creating RNA copies of genes. This feature enables cells to adapt more quickly to changes, which is particularly important for genes involved in the development of the nervous system and in other critical processes.  

'To create a copy of a gene, RNA polymerase must bind to a specific DNA region and produce an RNA copy. If many copies are needed, multiple "photocopying machines" attach to the region simultaneously. However, the mechanism is slightly different: instead of repeatedly copying one page, there is a single "book"—a DNA sequence—to be copied. Small "photocopying machines" are deployed along the "book," each moving along the DNA and creating a copy. To produce more copies, it is essential for each new "copying machine" to attach immediately after the previous one finishes its work. The frequency at which new copies are initiated is called the rate of transcription initiation,' explains Maria Poptsova, co-author of the paper and Head of the International Laboratory of Bioinformatics of the HSE Faculty of Computer Science. 

The team at the International Laboratory of Bioinformatics has developed a website that hosts machine learning-based algorithms for data analysis, as well as whole-genome annotations—detailed information about the functional elements of the genome.

See also:

Similar Comprehension, Different Reading: How Native Language Affects Reading in English as a Second Language

Researchers from the MECO international project, including experts from the HSE Centre for Language and Brain, have developed a tool for analysing data on English text reading by native speakers of more than 19 languages. In a large-scale experiment involving over 1,200 people, researchers recorded participants’ eye movements as they silently read the same English texts and then assessed their level of comprehension. The results showed that even when comprehension levels were the same, the reading process—such as gaze fixations, rereading, and word skipping—varied depending on the reader's native language and their English proficiency. The study has been published in Studies in Second Language Acquisition.

Mortgage and Demography: HSE Scientists Reveal How Mortgage Debt Shapes Family Priorities

Having a mortgage increases the likelihood that a Russian family will plan to have a child within the next three years by 39 percentage points. This is the conclusion of a study by Prof. Elena Vakulenko and doctoral student Rufina Evgrafova from the HSE Faculty of Economic Sciences. The authors emphasise that this effect is most pronounced among women, people under 36, and those without children. The study findings have been published in Voprosy Ekonomiki.

Scientists Discover How Correlated Disorder Boosts Superconductivity

Superconductivity is a unique state of matter in which electric current flows without any energy loss. In materials with defects, it typically emerges at very low temperatures and develops in several stages. An international team of scientists, including physicists from HSE MIEM, has demonstrated that when defects within a material are arranged in a specific pattern rather than randomly, superconductivity can occur at a higher temperature and extend throughout the entire material. This discovery could help develop superconductors that operate without the need for extreme cooling. The study has been published in Physical Review B.

Scientists Develop New Method to Detect Motor Disorders Using 3D Objects

Researchers at HSE University have developed a new methodological approach to studying motor planning and execution. By using 3D-printed objects and an infrared tracking system, they demonstrated that the brain initiates the planning process even before movement begins. This approach may eventually aid in the assessment and treatment of patients with neurodegenerative diseases such as Parkinson’s. The paper has been published in Frontiers in Human Neuroscience.

Civic Identity Helps Russians Maintain Mental Health During Sanctions

Researchers at HSE University have found that identifying with one’s country can support psychological coping during difficult times, particularly when individuals reframe the situation or draw on spiritual and cultural values. Reframing in particular can help alleviate symptoms of depression. The study has been published in Journal of Community Psychology.

Scientists Clarify How the Brain Memorises and Recalls Information

An international team, including scientists from HSE University, has demonstrated for the first time that the anterior and posterior portions of the human hippocampus have distinct roles in associative memory. Using stereo-EEG recordings, the researchers found that the rostral (anterior) portion of the human hippocampus is activated during encoding and object recognition, while the caudal (posterior) portion is involved in associative recall, restoring connections between the object and its context. These findings contribute to our understanding of the structure of human memory and may inform clinical practice. A paper with the study findings has been published in Frontiers in Human Neuroscience.

Researchers Examine Student Care Culture in Small Russian Universities

Researchers from the HSE Institute of Education conducted a sociological study at four small, non-selective universities and revealed, based on 135 interviews, the dual nature of student care at such institutions: a combination of genuine support with continuous supervision, reminiscent of parental care. This study offers the first in-depth look at how formal and informal student care practices are intertwined in the post-Soviet educational context. The study has been published in the British Journal of Sociology of Education.

AI Can Predict Student Academic Performance Based on Social Media Subscriptions

A team of Russian researchers, including scientists from HSE University, used AI to analyse 4,500 students’ subscriptions to VK social media communities. The study found that algorithms can accurately identify both high-performing students and those struggling with their studies. The paper has been published in IEEE Access.

HSE Scientists: Social Cues in News Interfaces Build Online Trust

Researchers from the HSE Laboratory for Cognitive Psychology of Digital Interface Users have discovered how social cues in the design of news websites—such as reader comments, the number of reposts, or the author’s name—can help build user trust. An experiment with 137 volunteers showed that such interface elements make a website appear more trustworthy and persuasive to users, with the strongest cue being links to the media’s social networks. The study's findings have been published in Human-Computer Interaction.

Immune System Error: How Antibodies in Multiple Sclerosis Mistake Their Targets

Researchers at HSE University and the Institute of Bioorganic Chemistry of the Russian Academy of Sciences (IBCh RAS) have studied how the immune system functions in multiple sclerosis (MS), a disease in which the body's own antibodies attack its nerve fibres. By comparing blood samples from MS patients and healthy individuals, scientists have discovered that the immune system in MS patients can mistake viral proteins for those of nerve cells. Several key proteins have also been identified that could serve as new biomarkers for the disease and aid in its diagnosis. The study has been published in  Frontiers in Immunology. The research was conducted with support from the Russian Science Foundation.